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Abstract
The aim of the study was to analyses rat soleus fibers and left ventricle (LV) cardiomyocyte cell respiration after 6, 12, 18, 

24 and 72 hours of antiorthostatic suspension by the tail. We measured V0 – basal oxygen consumption rate, V Glu+Mal – respiration 
velocity over a catalyst of malate and glutamate (5 mM glutamate + 2 mM malate) and Vmax – maximal respiratory rate (in the 
presence of 1 mM ADP) using the Saks polarography technique. We also determined the cytochrome c content and expression of 
its gene (Cycs) and the GAPDH gene using Western blotting and real-time PCR.

Cell respiration parameters in cardiomyocytes increased after 18 hours of suspension: V0 increased by 35%, VGlu+Mal by 
90% and Vmax by 85% in comparison with the control group (p<0.05). Cytochrome c content in a mix of the membrane and 
mitochondrial fractions grew by 34.6% (p<0.05) compared to control after 18 hours. However, Cycs and Gapdh expression rates 
remained stable. Protein content increase in this case may result from increased translation efficiency and/or a reduction in the 
level of proteolysis. 

Intensity of soleus fiber cell respiration decreased after 72 hours of suspension, V0 decreased by 76%, VGlu+Mal by 59% and 
Vmax by 53% compared to controls (p<0.05). Cytochrome c content fell after 24 hours of suspension by 15.7% (p<0.05) and by 
57.9% (p<0.05) after 72 hours relative to controls. At the same time, Cycs mRNA content decreased after 6 hours of unloading by 
23% (p<0.05) and continued to decrease to 59% (p<0.05) of the control level after 72 hours.
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Introduction
Reduction of muscle-system functional abilities follows 

from long-term weightlessness or hypokinesic conditions. 
Firstly, these conditions affect postural muscles, particularly 
the M. soleus muscle [1,2]. Additionally, weightlessness 
results in cardiovascular system changes, i.e., a fluid shift in a 
cranial direction [3,4] and a change in heart-stroke volume [5-7].

Cell inner-energy exchange parameters also contribute 
to negative consequences in muscles due to gravitational 
unloading. It appears in content change in substrates (glycogen 
and triglycerides) [8-11] and in cell respiration parameters 
[12,13]. Respiratory rate depends on the Krebs cycle 
fermentation activity, electron transition chain conditions and 

mitochondrial membrane ADP permeability. 
Gravitational unloading does not result in a significant 

change in malate dehydrogenase in the soleus muscle [14], 
succinate dehydrogenase [15], or citrate synthase [16]. 
However, Ohira et al. [17] showed a reduction in citrate 
synthase activity after 10 days of rat hind-limb suspension. 

One can talk about the influence of the Krebs cycle 
fermentation activity on the cell respiration parameters only 
if the respiration chain remains in the same state. Ohira 
et al. [17] and Oishi et al. [18] showed that gravitational 
unloading of 10 and 14 days’ duration resulted in reduction 
of cytochrome oxidase activity in rat soleus fibers. This fact 
may indicate mitochondrial respiratory chain malfunction, 
since cytochrome oxidase catalysis the final stage of electron 
transition into oxygen during the oxidative phosphorylation 
process. At the same time Bigard et al. [16] showed that 
three-weeks’ unloading does not lead to significant changes in 
oxygen consumption by skinned soleus fibers.

Such parameters in the cardiovascular system vary 
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greatly. Most researchers noted fluid shift and hypovolaemia 
in rats under antiorthostatic suspension [19-21]. In addition, 
Shellock et al. [22] showed the magnitude of these effects 
to be dependent on the suspension angle. Short-term effects 
lead to a bulk-load increase on the heart by cardiopulmonary 
receptor activation [23]. Yin et al. [24] and Cui et al. [25] 
showed that the rats’ heart mass and arterial pressure remained 
at the control level, but pressure in the left ventricle decreased. 
Baroceptor reflex sensitivity also does not differ after a 14-day 
suspension [26]. These data show that the effects of the acute 
period have been compensated for at this moment. 

However, there are data about contractibility loss in rats’ 
hearts due to long-term suspension [27-29]. Dunlap et al. [30] 
showed the maximal contraction force to be reduced by 15% 
after a seven-day suspension. Calcium sensitivity changed in 
the same way. According to the authors, this may occur due 
to a change in the expression rate of contractile proteins as a 
result of a bulk-load increase in the heart.

A number of authors detected a loss of myocardial 
contractile ability and a decrease in oxygen consumption under 
long-term suspension [31,32]. However, Bigard et al. [16] 
did not find any change in rat cardiomyocyte cell respiration 
after a three-week suspension. Oxidative fermentation and 
mitochondrial creatine kinase activity increased in rats’ right 
ventricle after two weeks of suspension [33].

Respiratory rate can also be affected by ADP 
concentration in mitochondria, depending on external 
membrane permeability. This permeability is regulated by 
cytoplasmic proteins, and seems to be connected to cytoskeletal 
proteins [34]. Desmin may play this role, according to 
experiments with null-desmin mice [35,36].

It is known that mitochondria are connected to the 
cytoskeleton, which has been proved by a number of 
investigations [37-42]. However, the role of the cytoskeleton 
in regulating mitochondrial function remains unclear. 
Ultrastructural analysis of different types of cells showed 
the obvious connection between mitochondria and desmin 
intermediate filaments [43-45]. An anomalous accumulation of 
subsarcolemmal mitochondria clusters was detected in soleus 
fibers of null-desmin mice [36]. These authors also showed 
that both oxygen consumption rate and the ADP dissociation 
constant were significantly reduced in comparison with the 
control group [36]. 

On the other hand, desmin is anchored to the 
submembrane cytoskeleton and one can suppose that the 
change in the cortical cytoskeleton structure will lead to 
a change in respiratory rate. We showed previously that 
the cortical cytoskeleton change occurs at early stages of 
antiorthostatic suspension (6, 12 hours) in both soleus fibers 
and cardiomyocytes. Since cell respiration is one of the basic 
indexes of cell functional activity, the aim of this study was 
to analyses cell respiration parameters during ultra-short-term 
antiorthostatic suspension. 

Materials and Methods
Experiments were performed with the tissue of the 

left ventricle and the soleus muscle of a Wistar rat (n=42) 

weighing 225 to 255g. To simulate the microgravity conditions 
in rodents, antiorthostatic suspension was used according to 
the Ilyin-Novikov method modified by Morey-Holton et al. 
[46]. Control animals were housed under vivarium conditions 
and received standard food and water ad libitum. The duration 
of suspension was 6, 12, 18, 24 and 72 hours. The following 
groups were created: «Control», «6h», «12h», «18h», «24h» 
and «72h», with seven animals in each group. 

All procedures with animals were approved by the 
biomedical ethics committee of the State Research Center of 
Russia at the Institute of Biomedical Problems of the Russian 
Academy of Sciences.

Cell respiration by polarography
The parts of the tissues of the left ventricle and soleus 

muscle were prepared according to the standard method 
described by Saks et al. [47], and cell respiration was  estimated 
by polarography.

For exogenous substrates of the respiratory chain, we 
used a mix of 5mM glutamate and 2mM malate, and added 
1mM ADP to determine the maximum respiration rate. 
Changes of oxygen concentration were measured using Clark’s 
electrode and YSI Model 53 Oxygen Monitor (Yellow Spring 
Instrument Co., USA) at 22°C. The solubility of oxygen in 
1 ml of the incubation environment at this temperature was 
assumed to be 460ng-at [48]. 

The following parameters of respiration were measured: 
V0 – basal oxygen consumption rate, V Glu+Mal – respiration rate 
on substrates (5 mM glutamate + 2 mM malate) and Vmax – 
maximum respiration rate (in the presence of 1 mM ADP). 
After the measurements, the fibers were extracted from the 
polarographic cell, dried at 95°C and weighed to calculate the 
rates per mg of dry weight (ng-at О.min-1.mg-1). Respiratory 
ratio (RR) was calculated as the respiration rate in the presence 
of ADP to the respiration rate of exogenic substrates. We tested 
n = 7 samples from each group. 

Protein content by Western blotting
In order to determine the protein content, a portion of 

the rat’s left ventricle and soleus muscle was frozen at the 
temperature of liquid nitrogen. The method described in 
Vitorino et al. [49] was used to prepare tissue extracts and to 
obtain the mitochondrial membrane and cytoplasmic fraction 
of proteins. Denaturing polyacrylamide gel electrophoresis 
was performed using the Laemmli method and the Bio-Rad 
system (USA). Based on the measured concentration of the 
total fraction protein content, equal amounts of protein were 
added to each well. The transfer to the nitrocellulose membrane 
was performed using the method of Towbin et al. [50]. 

In order to determine the level of cytochrome c, 
specific monoclonal primary antibodies based on mice 
immunoglobulins were used (Santa Cruz Biotechnology, Inc.) 
at the manufacturer’s recommended dilution (1:200). For 
secondary antibodies, we used biotinylated goat antibodies 
against mice IgG (Santa Cruz Biotechnology, Inc.) diluted 
1:5000. 

Afterwards, all membranes were treated with 
streptavidin conjugated with horseradish peroxidase (Sigma, 
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Germany) diluted 1:5000. Protein bands were identified using 
3,3’-diaminobenzidine (Merck, USA).

mRNA by real-time PCR
For estimating the expression level, total cellular 

RNA from frozen rat tissues of soleus muscles and heart 
left-ventricles was isolated using an RNeasy Micro Kit 
(Qiagen, Germany) according to the manufacture’s protocol. 
Amplifications of transcripts were performed using 500 ng of 
total RNA and one-step reverse transcription RT-PCR system 
(Qiagen, Germany) according to the manufacturer’s protocol. 
The PCR primer sequences used in this study were designed 
using Primer3Plus software (Table 1).

The results obtained during the experiments were 
statistically processed with ANOVA, using a post-hoc t-test 
with a confidence level p<0.05 to evaluate the certainty of 
difference between the groups. The mean (M) and standard 
error of the mean (SEM) were calculated.

Results
Dynamics of the cell respiration parameters of the rat left-
ventricle cardiomyocytes and soleus muscle fibers under 
short-term antiorthostatic suspension

All cell respiration parameters of the rat left-ventricle 
cardiomyocytes (Table 2, Fig. 1A)  increased after 18 hours 
and remained high up to 72 hours of the antiorthostatic 
suspension: the basal respiration rate (V0) increased by 
35% (p<0.05), the respiration rate on exogenous substrates 
(VGlu+Mal) by 90% (p<0.05), and the maximum respiration rate 
determined by adding ADP (Vmax) by 85% (p<0.05) compared 
to the group «Control». 

Parameters of the cell respiration of the rat SM fibers did 
not differ from the control group up to the 72 hours of the AS. 
After 72 hours all parameters decreased.

Table 1. 

RT-PCR primers and products

Gene Direction Primer sequence (5’…3’) Product size, bp

Cycs Forward ccaaatctccacggtctgtt 190Reverse tctgccctttctcccttctt

Gapdh Forward acccagaagactgtggatgg 172Reverse acacattgggggtaggaaca

Table 2.
Cell respiration parameters of the rat LV cardiomyocytes under
short-term antiorthostatic suspension

Parameter

Group

V0,
ng-at О.min-1.mg-1

VGlu+Mal,
ng-at О.min-1.mg-1

Vmax,
ng-at О.min-1.mg-1

Respiration ratio

Control (n = 7) 13.5±1.6 15.3±1.8 28.7±2.5 1.91±0.20
6h (n = 7) 13.8±1.4 16.9±2.2 31±3 2.0±0.3
12h (n = 7) 15.0±1.1 15.9±1.1 34±4 2.2±0.3
18h (n = 7) 18.2±1.9* 29±3* 53±3* 2.1±0.3
24h (n = 7) 19.1±1.2* 25.9±1.9* 47±4* 1.83±0.13
72h (n = 7) 18.6±1.3* 24.2±2.0* 47±5* 1.91±0.21

* - p<0.05 as compared to the Control

Figure 1. Averaged curves of the oxygen consumption by rat left-ventricle 
cardiomyocytes (A) and soleus muscle fibres (B) under under antiorthostatic 
suspension of different short durations. (A) – mentioned two groups of 
parallel curves: cardiomyocyte cell respiration increased after 18 hours of the 
antiorthostatic suspension and after it cell respiration parameters remained 
elevated up to 72 hours. (B) – soleus fiber cell respiration parameters decreased 
after 72 hours, that is significantly later than the cardiomyocytes, but were more 
pronounced.
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Parameters of the cell respiration of the rat soleus 
muscle fibers (Table 3, Fig. 1B) did not differ from the control 
group up to the 72 hours of the antiorthostatic suspension. 
After 72 hours all parameters decreased: V0 decreased by 76% 
(p<0.05), VGlu+Mal by 59% (p<0.05) and Vmax by 53% (p<0.05) 
compared to the group «Control».

The estimated value reflecting the efficiency of coupling 
of oxidation and phosphorylation, known as RR, during 
antiorthostatic suspension did not differ from that of the 
control group,nor did cardiomyocytes or soleus fibres. 

Cytoskeletal protein content dynamic of left ventricle 
cardiomyocytes and soleus muscle fibers of rats after short-
term gravitational unloading

Cytochrome c (CYCS) content (Fig. 2C) in the membrane 
fraction, which includes also the mitochondrial fraction, of 
rats’ left ventricles increased after 18 hours of suspension by 
34.6% (p<0.05), after 24 hours by 79.2% (p<0.05) and after 
72 hours by 50.8% (p<0.05) in comparison with the control 
level. In soleus fibers, CYCS content decreased after 24 hours 
of suspension by 15.7% (p<0.05) and by 57.9% (p<0.05) after 
72 hours relative to control. However, we did not detect CYCS 
in the cytoplasmic fraction of either cardiomyocytes or soleus 
fibers.

Dynamic of expression level of genes encoding cytochrome 
c and glyceraldehyde 3-phosphate dehydrogenase, in left-
ventricle cardiomyocytes and soleus muscle fibers of rats 
after short-term gravitational unloading

The expression level of cytochrome c gene (Cycs) and 
glyceraldehyde 3-phosphate dehydrogenase gene (Gapdh) in 
rats’ left-ventricle cardiomyocyctes did not change during the 
antiorthostatic suspension. In soleus fibers, Cycs  mRNA (Fig. 
3, A) decreased by 23% (p<0.05) in group «6h» and continued 
to fall, dropping by 41% (p<0.05) at 72 hours compared to the 
control level.

 

The expression level of Gapdh (Fig. 3, B) decreased by 19% 
(p<0.05) in comparison with «control» after 12 hours of 
unloading, but after 18 hours was restored to the control level 
and remained unchanged during the following period. 

Discussion
It was shown that stretching/compression of the muscle 

cell membrane may influence mitochondria functioning by the 
mean of cytoskeleton [51,52]. An anomalous accumulation of 
subsarcolemmal mitochondria clusters was detected in soleus 
fibers of null-desmin mice [36], and these authors also showed 
a decrease in the rate of oxygen consumption. 

Saks et al. [53] also showed that oxygen consumption 
depends on the cytoskeletal state. Our previously obtained 
data showed that the velocity of basal cell respiration in a 
rat’s cardiomyocytes significantly increased after one day 
of suspension, but after three days returned to the control 
level. However, other cell respiration parameters significantly 
increased after 24 hours and remained high during 14 days. 
Three days of recovery resulted in a significant reduction in 
all parameters compared to the control level [13]. Moreover, 
there was an increase of the relative content of desmin in 
cardiomyocytes [13]. Desmin is necessary to determine 
localization and regulate permeability.

Under gravitational unloading, the respiratory rate 
of soleus fiber cells decreased after three days, reached its 
minimum after seven days, and slightly grew to the 14th day. 
This result correlates with desmin content dynamics [55,56]. 
Three days of recovery resulted in a significant reduction in 
cell respiratory rate, although it returned to the control level 
after seven days of readaptation [57].

Table 3. 
Cell respiration parameters of the rat soleus muscle fibres under
short-term antiorthostatic suspension

Parameter
Group

V0,
ng-at О.min-1.mg-1

VGlu+Mal,
ng-at О.min-1.mg-1

Vmax,
ng-at О.min-1.mg-1

Respiration ratio

Control (n = 7) 5.3±0.7 9.9±1.2 13.0±1.2 1.43±0.21
6h (n = 7) 5.0±0.4 8.6±0.5 13.3±1.1 1.6±0.3
12h (n = 7) 6.2±0.6 8.4±0.8 12.5±0.5 1.55±0.13
18h (n = 7) 5.1±0.6 8.4±0.6 1.4±0.7 1.57±0.13
24h (n = 7) 5.6±0.7 8.3±0.5 11.3±1.3 1.49±0.18
72h (n = 7) 1.29±0.09* 4.1±0.4* 6.1±0.8* 1.63±0.28

* - p<0.05 as compared to the Control

Figure  2.  Relative CYCS content in the mitochondrial membrane protein 
fraction of left-ventricle cardiomyocytes (LV) and soleus muscle fibres (Sol) of 
rats after short-term gravitational unloading and typical Western blot pictures; 
* p<0.05 as compared to the group «Control» indicated as «C» in this figure.

Figure  3. Expression level of genes encoding metabolic proteins, in left-
ventricle cardiomyocytes (LV) and soleus muscle fibers (Sol) of rats after short-
term gravitational unloading; * p<0.05 as compared to the group «Control» 
indicated as «C» inthis figure.  A – cytochrome c gene (Cycs), B – glyceraldehyde 
3-phosphate dehydrogenase gene (Gapdh).
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At the same time, desmin content in the soleus muscle 
was higher than the control level by 50% after one day of 
suspension and by 67% after three days [55]. Nevertheless, 
the respiratory rate decreased after two days of unloading 
by 37% in subsarcolemmal mitochondria obtained from the 
soleus muscle [56].

Since desmin mostly localizes in the Z-disk area 
and connects it to the submembrane cytoskeleton [59], one 
can assume that the condition of the cortical cytoskeleton 
influences the respiratory rate. For example, alpha-actinin-4 
– one of cytoskeletal proteins – may bind with the promoter 
region of the cytochrome c gene, resulting in its expression 
level change [60].

We showed earlier that alpha-actinin-1 content was 
reduced after six hours of suspension (in cardiomyocytes) and 
alpha-actinin-4 (in soleus fibers) in the membrane fraction 
and increased in the cytoplasmic fraction. The expression 
level of beta- and gamma-actin, and alpha-actinin-1 and 4 
genes decreased after 6 and 12 hours, but alpha-actinin-1 gene 
expression was restored after 72 hours.  Beta-actin and alpha-
actinin-4 gene expression increased after 18 and 24 hours 
[61]. For this reason, we decided to analyses cell respiration 
parameters after ultra-short-term antiorthostatic suspension.

The respiratory rate increase in cardiomyocytes 
appeared after 18 hours of suspension, which might be 
connected with an increase in the efficiency of respiration 
chain terminal stages or with an increase in the number of 
respiration chain complexes. Since the respiration control 
level – i.e. the coupling of oxidation and phosphorylation – 
remains stable through all suspension periods, the second way 
is more probable. We analyzed cytochrome c content (one 
of the key components of the respiration chain) and showed 
that it increased after 18 hours of suspension. However, its 
gene expression rate remained unchanged throughout, as did 
gapdh expression. All these facts about protein content and 
expression of their genes may point to either an increase in 
translation efficiency or a reduction in proteolysis activity.

At the same time, a reduction in Cycs expression was 
observed in soleus fibers after six hours of suspension, and 
a decrease in protein content occurred after 24 hours by 
15.7% (p<0.05) and after 72 hours by 57.9% (p<0.05). Cell 
respiration intensity also reduced after 72 hours. 

Differently directed cell respiration change takes place 
in rat cardiomyocytes and soleus fibers. Protein content 
changes were also different: alpha-actinin-1 dissociates in the 
cytoplasm in cardiomyocytes; in soleus fibers it was alpha-
actinin-4 [61].

Taking into account data obtained by Goffart et al. [60], 
one can suppose that alpha-actinin-4 in soleus fibers may 
migrate into the nucleus, where it binds to the Cycs promoter 
region and inhibits its expression. As a result, the number of 
respiratory chain complexes is reduced and we observe cell 
respiration parameters to decrease. 

Perhaps another mechanism takes place in 
cardiomyocytes. Alpha-actinin-1 dissociates from the cortical 
cytoskeleton, interacting with phospholipase-D and inhibiting 
its activity [62]. Phospholipase-D, liberated due to alpha-
actinin-1 dissociation, regulates the efficiency of translation 

and protein synthesis. Without a change in Cycs expression, 
it may lead to an increase of cytochrome c content, and as a 
result to an increase in the number of respiratory chains.
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