Vibrational Decihertz (dHz), Centihertz (cHz), Millihertz (mHz), Microhertz (μHz), Nanohertz (nHz), Picohertz (pHz), Femtohertz (fHz), Attohertz (aHz), Zeptohertz (zHz) and Yoctohertz (yHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation

Alireza Heidari, PhD, ScD
Faculty of Chemistry, California South University, Irvine, CA, USA

Abstract

In the current study, we have experimentally and computationally presented vibrational decihertz (dHz), centihertz (cHz), millihertz (mHz), microhertz (μHz), nanohertz (nHz), picohertz (pHz), femtohertz (fHz), attohertz (aHz), zeptohertz (zHz) and yoctohertz (yHz) imaging and spectroscopy comparative study on malignant and benign human cancer cells and tissues under synchrotron radiation. It can be concluded that malignant human cancer cells and tissues have gradually transformed to benign human cancer cells and tissues under synchrotron radiation with the passing of time. (International Journal of Biomedicine. 2017;7(4):335-340.)

Key Words: spectroscopy • synchrotron radiation • cancer cells • malignant cells • benign cells

Introduction

In the current study, we have experimentally and computationally presented vibrational decihertz (dHz), centihertz (cHz), millihertz (mHz), microhertz (μHz), nanohertz (nHz), picohertz (pHz), femtohertz (fHz), attohertz (aHz), zeptohertz (zHz) and yoctohertz (yHz) imaging and spectroscopy comparative study on malignant and benign human cancer cells and tissues under synchrotron radiation [1–100]. In this regard, we have experimentally investigated and compared malignant human cancer cells and tissues before and after irradiating of synchrotron radiation using vibrational decihertz (dHz), centihertz (cHz), millihertz (mHz), microhertz (μHz), nanohertz (nHz), picohertz (pHz), femtohertz (fHz), attohertz (aHz), zeptohertz (zHz) and yoctohertz (yHz) imaging and spectroscopy. It is clear that malignant human cancer cells and tissues have gradually transformed to benign human cancer cells and tissues under synchrotron radiation with the passing of time (Figure 1).[1–100]
Furthermore, we have computationally simulated this transformation process according to the passing of time (Figure 2) and also different distributions of human cancer cells and tissues (Figure 3) using MATLAB, respectively.(1–100)

Fig. 2. Simulation of transformation process of malignant human cancer cells and tissues to benign human cancer cells and tissues under synchrotron radiation with the passing of time using MATLAB.(1–100)

Fig. 3. Different simulations of transformation process of malignant human cancer cells and tissues to benign human cancer cells and tissues under synchrotron radiation according to the different distributions of human cancer cells and tissues using MATLAB.(1–100)
It should be noted that different simulations of transformation process of malignant human cancer cells and tissues to benign human cancer cells and tissues under synchrotron radiation according to the different distributions of human cancer cells and tissues using MATLAB (a) before irradiating of synchrotron radiation (top left), after (b) 10 days (top right), (c) 20 days (left bottom) and (d) 30 days (right bottom) irradiating of synchrotron radiation was investigated (Figure 3).(110) It can be concluded that malignant human cancer cells and tissues have gradually transformed to benign human cancer cells and tissues under synchrotron radiation with the passing of time (Figures 1–3).(110–100)

Conflicts of interest

There are no commercial interests or conflicts of interest to declare.

References

18. Heidari A. Measurement the Amount of Vitamin D2 (Ergocalciferol), Vitamin D3 (Cholecalciferol) and Absorbable Calcium (Ca2+), Iron (II) (Fe2+), Magnesium (Mg2+), Phosphate (PO4–) and Zinc (Zn2+) in Apricot Using High–Performance Liquid Chromatography (HPLC) and Spectroscopic Techniques. J Biom Biostat. 2016;7:292.
19. Heidari A. Spectroscopy and Quantum Mechanics of the Helium Dimer (He2+), Neon Dimer (Ne2+), Argon Dimer (Ar2+), Krypton Dimer (Kr2+), Xenon Dimer (Xe2+), Radon Dimer(Rn2+) and Ununoctium Dimer (Uuo2+) Molecular Cations. Chem Sci J. 2016;7:e112.

27. Heidari A. Discriminate between Antibacterial and Non–Antibacterial Drugs Artificial Neural Networks of a Multilayer Perceptron (MLP) Type Using a Set of Topological Descriptors. J Heavy Met Toxicity Dis. 2016;1:2.

31. Heidari A. Molecular Dynamics and Monte–Carlo Simulations for Replacement Sugars in Insulin Resistance, Obesity, LDL Cholesterol, Triglycerides, Metabolic Syndrome, Type 2 Diabetes and Cardiovascular Disease: A Glycobiological Study. J Glycobiol. 2016;5:e111.

52. Heidari A. Graph Theoretical Analysis of Zigzag Polyhexamethylene Biguanide, Polyhexamethylene Adipamide, Polyhexamethylene Biguanide Gauze and Polyhexamethylene Biguanide Hydrochloride (PHMB)

70. Heidari A. Biomedical Resource Oncology and Data Mining to Enable Resource Discovery in Medical, Medicinal, Clinical, Pharmaceutical, Chemical and Translational Research and Their Applications in Cancer Research. Int J Biomed Data Min.2017;6:e103.

78. Heidari A. Clinical Trials of Dendritic Cell Therapies for Cancer Exposing Vulnerabilities in Human Cancer Cells’ Metabolism and Metabolomics: New Discoveries, Unique Features Inform New Therapeutic Opportunities, Biotech’s...

