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Abstract
The aim of our study was to assess the effect of polymorphic markers of the AGT T704C (M235T) rs699 and NOS3 G894T 

(Glu298Asp) rs1799983 SNPs on the risk of the development of treatment-resistant hypertension (TRH).
Methods and Results: The study included 178 patients (mean age of 56.67±11.12 years) with AH Grades 1-3 (ESC/ESH, 

2018), who were on outpatient treatment at the Republican Specialized Scientific and Practical Medical Center for Cardiology. 
The effectiveness of therapy was assessed by achieving the target BP level according to 2018 ESH/ESH Guidelines for the 
management of AH. The primary target level for SBP and DBP was <140 mmHg and <90 mmHg, respectively. 

Genomic DNA samples were isolated from the peripheral blood leukocytes by using the DiatomТМ DNA Prep 200 Kit 
(Isogen Laboratory LLC, Moscow) according to manufacturer`s protocol. A multiplex RT-PCR assay was used to detect the 
AGT T704C (M235T) rs699 SNP and NOS3 G894T (Glu298Asp) rs1799983 SNP. 

We studied the distribution of the AGT T704C (M235T) rs699 SNP in 61 Uzbek patients with TRH (cases) and 117 Uzbek 
patients with non-TRH (controls) (Group 1) and the distribution of the NOS3 G894T (Glu298Asp) rs1799983 SNP in 61 Uzbek 
patients with TRH (cases) and 115 Uzbek patients with non-TRH (controls) (Group 2).

Our results indicate a significantly greater accumulation of the C allele and CC genotype of the AGT T704C (M235T) rs699 
SNP among TRH patients than among patients with non-TRH. We found a significant association between the AGT T704C 
(M235T) rs699 SNP and the risk of TRH under the multiplicative genetic model  (C vs. T:  OR=1.85, 95% CI: 1.17-2.92, P=0.008), 
additive model (CC  vs.TT vs. TC; OR=3.00, 95% CI: 1.56-5.75, P=0.009), and recessive model (CC vs. TC+TT; OR=3.00, 95% 
CI: 1.56-5.75, P=0.0008). For the NOS3 G894T (Glu298Asp) rs1799983 SNP, the multiplicative model showed a significant risk 
of TRH with the carriage of the T allele (OR=1.99, 95% CI: 1.20-3.28, P=0.007), and the additive model showed a significant risk 
of TRH with the carriage of the heterozygous GT genotype (OR=2.25, 95% CI: 1.17-4.33, P=0.01). At the same time, the carriage 
of the G allele (OR=0.5, 95% CI: 0.30-0.83, P=0.007) and GG genotype (OR=0.40, 95% CI: 0.21-0.76, P=0.01) may be protective 
against the development of TRH.

Conclusion: Further genetic studies of TRH may help achieve better individual outcomes by optimizing drug therapy based 
on genetic variation.(International Journal of Biomedicine. 2023;13(2):210-216.)
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Introduction
Treatment-resistant hypertension (TRH) is defined as 

uncontrolled hypertension on ≥3 antihypertensive medication 
classes or requiring ≥4 antihypertensive medications to reach 
their BP goals.(1,2) Among US adults taking antihypertensive 
medication, the prevalence of apparent TRH was 17.7% (9.2 
million persons) when applying the definition in the 2008 
Scientific Statement, whereas it was 19.7% (10.3 million 
persons) using the 2018 Scientific Statement definition.(3) The 
etiology of TRH appears to be multifactorial. Risk factors 
for TRH include older age, obesity, impaired renal function, 
diabetes mellitus, African American race, and other factors, 
including genetic ones.(4-8) 

The question of whether there are specific genetic risk 
factors for TRH is of great interest, especially considering 
race and ethnicity. Although previous studies have identified 
numerous genetic variants associated with hypertension 
and blood pressure,(9-12) there is little evidence regarding the 
molecular genetic factors of TRH. To date, the available 
evidence surrounding pharmacogenomics in TRH is limited 
and primarily focused on candidate genes.(13-15) In recent years, 
several studies with an integrated genetic approach, genome-
wide association studies (GWASs), have identified some 
significant susceptibility loci for TRH in the US population.(16-19)

A published paper entitled “Genetic and adverse health 
outcome associations with TRH in GenHAT” by Lynch 
et al.(20) evaluated the association between 78 candidate 
gene polymorphisms and TRH. The main finding was the 
association of two genetic variants in the AGT gene, the M 
allele of rs699 and the G allele of rs5051, and TRH in white 
but not in African American subjects.

The M235T molecular variant (T704C, rs699 ) of 
the AGT gene, encoding a threonine instead of a methionine at 
residue 235 of the mature protein, has been associated with a 
higher plasma AGT level and higher BP in patients homozygous 
for the T allele and occurs among various ethnic populations.(21-13) 
In a meta-analysis, the TT genotype was associated with a 32% 
increase in the risk of hypertension in white people but not in 
non-white people, when compared with the MM genotype.(24)

The most examined rs1799983 polymorphism (also 
known as G894T or Glu298Asp) is located in exon 7 of 
the NOS3 gene and formed by a transversion from guanine (G) 
to thymine (T), resulting in the replacement of glutamic acid 
(Glu) residue with aspartic acid (Asp) residue in the NOS3 
polypeptide.(25) This genetic mutation reduces the production 
of NO and subsequently affects the development of AH.(26) In 
some studies, the T allele of the rs1799983 polymorphism was 
reported to be associated with a decreased level of NO.(27-29)

Unfortunately, the literature data on genetic studies 
of resistant arterial hypertension, especially in the Asian 
population, are limited. A better understanding of genetic risk 
may improve clinical care for TRH and prevent associated 
cardiovascular disease morbidity and mortality.

The aim of our study was to assess the 
effect of polymorphic markers of the AGT T704C 
(M235T) rs699 and NOS3 G894T (Glu298Asp) rs1799983 
SNPs on the risk of TRH development.

Materials and Methods
The study included 178 patients (mean age of 

56.67±11.12 years) with AH Grades 1-3 (ESC/ESH, 2018), 
who were on outpatient treatment at the Republican Specialized 
Scientific and Practical Medical Center for Cardiology. The 
effectiveness of therapy was assessed by achieving the target 
BP level according to 2018 ESH/ESH Guidelines for the 
management of AH. The primary target level for SBP and 
DBP was <140 mmHg and <90 mmHg, respectively. 

Exclusion criteria were symptomatic hypertension, 
valvular heart disease, acute coronary syndrome, chronic heart 
failure (NYHA FC>III), cardiac arrhythmia, history of stroke 
and myocardial infarction, diabetes, occlusive peripheral 
arterial disease, renal impairment, severe co-morbidities, 
orthostatic hypotension.

All patients underwent the following examinations: 
assessment of traditional risk factors, physical examination, 
clinical and biochemical laboratory methods, 12-lead ECG, and 
echocardiography. Office BP was measured using a mercury 
sphygmomanometer, according to Korotkov’s method. BP 
was measured 3 times, and the means of these measurements 
were used in the analyses. Echocardiography was carried out 
according to the recommendations of the American Society of 
Echocardiography in M- and B-modes using Philips EnVisor 
C Ultrasound Machine (the Netherlands). LVM was calculated 
using the formula R. Devereux (1994).  Left ventricular 
hypertrophy (LVH) was defined as LVMI of >95 g/m2 (for 
women) and >115 g/m2 (for men).(30)  Carotid intima-media 
thickness (CIMT) was assessed for both left and right carotid 
arteries using a 7.5 MHz linear array transducer (Sonoline 
Versa Pro ultrasound system, Siemens, Germany).

Blood levels of TC, TG, HDL-C, LDL-C, and VLDL-C 
were determined in the venous blood using automatic 
biochemical analyzer Daytona (RANDOX, United Kingdom) 
and RANDOX test systems by the enzymatic colorimetric 
method. The content of LDL-C was calculated according to 
Fridvald’s formula.

Genomic DNA samples were isolated from the peripheral 
blood leukocytes by using the DiatomТМ DNA Prep 200 Kit 
(Isogen Laboratory LLC, Moscow, Russia) according to 
manufacturer`s protocol. The quantity and quality of DNA were 
determined on a NanoDrop 2000 spectrophotometer (Thermo 
Scientific™ Wilmington, DE, USA). A multiplex RT-PCR 
assay was used to detect the AGT T704C (M235T) rs699 and 
NOS3 G894T (Glu298Asp) rs1799983 SNPs.

Statistical analysis was performed using the statistical 
software «Statistica» (v10.0, StatSoft, USA). For descriptive 
analysis, results are presented as mean±standard deviation 
(SD). Means of 2 continuous normally distributed variables 
were compared by independent samples Student’s t test. The 
Mann-Whitney U Test was used to compare the differences 
between the two independent groups (for nonparametric data). 
Group comparisons with respect to categorical variables were 
performed using chi-square test. Genetic markers for HWE 
were tested. Differences in the allele and genotype distribution 
between the groups were assessed by χ2-test. Odds ratios 
(ORs) and 95% confidence intervals (CIs) were calculated. 



212                                  Sh. M. Masharipov et al. / International Journal of Biomedicine 13(2) (2023) 210-216

Four genetic models were analyzed: the dominant model, the 
recessive model, the multiplicative model, and the additive 
model (the Cochran-Armitage trend test). A probability value 
of P<0.05 was considered statistically significant.

The study protocol was reviewed and approved by the 
Ethics Committee of the Republican Specialized Centre of 
Cardiology. All participants provided the written informed 
consent. 

Results and Discussion
We studied the distribution of the AGT T704C (M235T) 

rs699 polymorphism in 61 Uzbek patients with TRH (cases) 
and 117 Uzbek patients with non-TRH (controls) (Group 1). We 
also studied the distribution of the NOS3 G894T (Glu298Asp) 
rs1799983 polymorphism in 61 Uzbek patients with TRH 
(cases) and 115 Uzbek patients with non-TRH (controls) 
(Group 2). The clinical characteristics of AH patients are 
presented in Table 1. 

In Group 1, the mean age of the 178 AH patients was 
56.67±11.12 years, the mean duration of AH was 9.42±5.49 
years, and the average SBP and DBP were 166.53±17.68 mmHg 
and 98.55±12.02 mmHg, respectively. Obesity and overweight 
were found in 52.8% and 32.0% of cases, respectively. About 
87.6% and 74.7% of patients were diagnosed with LVH and 
increased CIMT, respectively. Dyslipidemia was detected in 
77.0% of patients. In Group 2, the mean age of the 176 AH 
patients was 56.71±11.14 years, the mean duration of AH 
was 9.56±5.83 years, and the average SBP and DBP were 
166.55±17.79 mmHg and 98.89±12.17 mmHg, respectively. 

Obesity and overweight were found in 52.8% and 31.8% 
of cases, respectively. About 88.1% and 75.0% of patients 
were diagnosed with LVH and increased CIMT, respectively. 
Dyslipidemia was detected in 77.3% of patients. Thus, given 
the previous data, our AH patients had a high and high-to-
very-high cardiovascular risk. In both groups, TRH patients 
were older than non-TRH patients and had a longer course of 
AH, higher SBP and DBP, and LVH frequency.

Results of the genotyping of the AGT T704C 
(M235T) rs699 and NOS3 G894T (Glu298Asp) rs1799983 
SNPs are presented in Table 2.

 The distribution of polymorphic markers of the 
AGT T704C (M235T) rs699 SNP in TRH patients and non-
TRH patients was in HWE. In TRH patients and non-TRH 
patients, the genotype distribution was as follows: CC=50.8%, 
CT=32.8%, TT=16.4% and CC=25.6%, CT=53.8%, 
TT=20.5%, respectively. An analysis of the frequency 
distribution of alleles of the AGT T704C (M235T) rs699 
SNP showed that the carriage of the C allele was dominant 
in TRH patients (67.2% vs. 32.8% for the T allele; P=0.000), 
compared to non-TRH patients (52.6% vs. 47.4% for the T 
allele; P>0.05). 

Analysis of the multiplicative model for 
the AGT Т704С (M235T) rs699 SNP showed a significant 
risk of TRH with the carriage of the C allele (OR=1.85, 
95% CI: 1.17-2.92, P=0.008). The additive and recessive 
models for the AGT Т704С (M235T) rs699 SNP showed a 
significant risk of TRH with the carriage of the homozygous 
CC genotype (OR=3.00, 95% CI: 1.56-5.75, P=0.009) 
(Table 3). 

Table 1.
Clinical characteristics of AH patients in the study groups.

Variable

 Group 1 
AGT T704C (M235T) rs699 SNP

Group 2
NOS3 G894T (Glu298Asp) rs1799983 SNP

Total
(n=178)

TRH
 (cases) 
n=61

non-TRH
(controls)

n=117
P Total

n=176
TRH 

(cases)
n=61

non-TRH
(controls)

n=115
P

Age, years 56.67±11.12 61.52±9.43 54.06±11.17 0.000 56.71±11.14 61.52±9.43 54.09±11.16 0.000

AH duration, years 9.42±5.49 10.60±5.69 8.77±5.32 0.035 9.56±5.83 10.60±5.69 8.69±5.84 0.039

SBP,  mmHg 166.53±17.68 172.42±20.62 162.73±16.31 0.001 166.55±17.79 172.42±20.62 162.91±16.17 0.001

DBP, mmHg 98.55±12.02 101.13±9.60 97.17±13.02 0.038 98.89±12.17 101.13±9.60 97.75±11.23 0.048

BPmean, mmHg 120.92±12.18 124.89±12.35 118.78±11.65 0.001 121.67±13.85 124.89±12.35 119.46±12.70 0.007

BMI, kg/m2 32.17±5.68 33.53±5.92 31.79±5.61 0.056 32.21±5.72 33.53±5.92 31.86±5.63 0.068

BMI>30 (kg/m2), % 94 (52.8%) 36 (59.0%) 58 (49.6%) 0.234 93 (52.8%) 36 (59.0%) 57 (49.6%) 0.236

BMI>25<30 (kg/m2), % 57 (32.0%) 21 (34.4%) 36 (30.8%) 0.626 56 (31.8%) 21 (34.4%) 35 (30.4%) 0.589

LVH, %  156 (87.6%) 59 (96.7%) 97 (82.9%) 0.008   155 (88.1%) 59 (96.7%) 96 (83.5%) 0.01

CIMT ≥0.9 mm, % 133 (74.7%) 48 (78.7%) 85 (72.6%) 0.376 132 (75.0%) 48 (78.7%) 84 (73.0%) 0.407

Dyslipidemia, % 137 (77.0%) 51 (83.6%) 86 (73.5%) 0.130 136 (77.3%) 51 (83.6%) 85 (73.9%) 0.145

 P - between cases  and controls in Groups 1 and 2.
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The distribution of polymorphic markers of 
the NOS3 G894T (Glu298Asp) rs1799983 SNP in TRH 
patients and non-TRH patients were in HWE. In TRH patients 
and non-TRH patients, the genotype distribution was as 
follows: GG=45.9%, GT=44.3%, TT=9.8% and GG=67.8%, 

GT=26.1%, TT=6.1%, respectively, thus GG genotype 
prevailed in non-TRH patients, compared to TRH patients 
(χ2=8.005, P=0.018). An analysis of the frequency distribution 
of alleles of the NOS3 G894T  (Glu298Asp) rs1799983 SNP 
showed that the carriage of the G allele was dominant in TRH 

Table 2.
The distribution of polymorphic markers of the AGT T704C (M235T) rs699 SNP and NOS3 G894T (Glu298Asp) rs1799983 SNP  in TRH 
patients and non-TRH patients (controls).

Gene SNP Genotype TRH HWE χ2 P Control HWE χ2 P Allele
Frequency of alleles

TRH Control

AGT rs699
Т704С

TT 0.164 0.107

1.72 0.19

0.205 0.225

0.35 0.56

T 0.328 0.474

CT 0.328 0.441 0.538 0.499 C 0.672 0.526

CC 0.508 0.452 0.256 0.276

NOS3 rs1799983
G894Т

GG 0.459 0.463

0.00 1

0.678 0.654

1.42 0.23

G 0.680 0.809

GT 0.443 0.435 0.261 0.309 T 0.320 0.191

TT 0.098 0.102 0.061 0.037

Table 3.
Genetic predisposition to TRH.

Genetic model Allele,
Genotype

Cases Controls
χ2 P

OR (95%CI)

n=61 n=117 OR 95%CI

AGT T704C (M235T) rs699 SNP 

Multiplicative model 
(χ2 test, df=1) 

T 0.328 0.474
7.05 0.008

0.54 0.34-0.85

C 0.672 0.526 1.85 1.17-2.92

Additive model 
([CATT], xi=[0,1,2], df=1)

TT 0.164 0.205

6.74 0.009

0.76 0.34-1.71

ТС 0.328 0.538 0.42 0.22-0.80

CC 0.508 0.256 3.00 1.56-5.75

Dominant model
(χ2 test, df=1)

TT 0.164 0.205
0.44 0.51

0.76 0.34-1.71

ТС + CC 0.836 0.795 1.32 0.58-2.97

Recessive model 
(χ2 test, df=1)

ТТ + ТС 0.492 0.744
11.28 0.0008

0.33 0.17-0.64

СС 0.508 0.256 3.00 1.56-5.75

NOS3 G894T (Glu298Asp) rs1799983 SNP 

Genetic model Allele,
Genotype

Cases Controls
χ2 P

OR (95%CI)

n=61 n=115 OR 95%CI

Multiplicative model
(χ2 test, df=1) 

G 0.680 0.809
7.29 0.007

0.50 0.30-0.83

T 0.320 0.191 1.99 1.20-3.28

Additive model
([CATT], xi=[0,1,2], df=1)

GG 0.459 0.678

6.62 0.01

0.40 0.21-0.76

GT 0.443 0.261 2.25 1.17-4.33

TT 0.098 0.061 1.68 0.54-5.25

Dominant model 
(χ2 test, df=1)

GG 0.459 0.678
8.00 0.005

0.40 0.21-0.76

GT + TT 0.541 0.322 2.48 1.31-4.70

Recessive model 
(χ2 test, df=1)

GG + GТ 0.902 0.939
0.82 0.37

0.59 0.19-1.85

TT 0.098 0.061 1.68 0.54-5.25
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patients (68.0% vs. 32.0% for the T allele) and non-TRH 
patients (80.9% vs. 19.1% for the T allele) with the highest 
degree of dominance in non-TRH patients vs. TRH patients  
(χ2=7.29, P=0.007). 

Analysis of the multiplicative model for the NOS3 G894T 
(Glu298Asp) rs1799983 SNP showed a significant risk of TRH 
with the carriage of the T allele (OR=1.99, 95% CI: 1.20-3.28, 
P=0.007). Analysis of the additive model for the NOS3 G894T 
(Glu298Asp) rs1799983 SNP showed a significant risk of TRH 
with the carriage of the heterozygous GT genotype (OR=2.25, 
95% CI: 1.17-4.33, P=0.01). At the same time, the carriage 
of the G allele (OR=0.5, 95% CI: 0.30-0.83, P=0.007) and 
GG genotype (OR=0.40, 95% CI: 0.21-0.76, P=0.01) may be 
protective against the development of TRH.

It should be noted that data on the study of molecular 
genetic markers of resistant hypertension are limited, 
especially in the Asian population. To identify novel genetic 
loci associated with resistant hypertension in the Japanese 
population, Takahashi et al.(32) conducted a genome-wide 
association study with 2705 resistant hypertension cases and 
21,296 mild hypertension controls, all from BioBank Japan. 
The authors identified one novel susceptibility candidate 
locus, rs1442386 on chromosome 18p11.3 (DLGAP1), 
achieving genome-wide significance (OR=0.85, 95% CI: 
0.81-0.90, P=3.75×10-8), and 18 loci showing suggestive 
association, including rs62525059 of 8q24.3 (CYP11B2) 
and rs3774427 of 3p21.1 (CACNA1D).(32) Yugar-Toledo et 
al.(33) examined 70 resistant, 80 well-controlled hypertensive 
patients, and 70 normotensive controls. All subjects were 
genotyped for ACE insertion/deletion (rs1799752), AGT 
M235T (rs699), and NOS3 Glu298Asp (rs 1799983), and 
the multifactor dimensionality reduction analyses showed 
that carriers of the AGT 235T allele were at increased risk 
for resistant hypertension, especially if they were older than 
50 years.

The vasodilator effect of NO that eNOS produces is 
very important for maintaining the vascular function,(31) and 
the G894T polymorphism, which is associated with reduced 
eNOS expression and activity, and subsequently reduced 
NO production, could be a potential candidate marker for 
hypertension development.(34,35) In a study by Shi et al.,(36) a 
total of 60 eligible articles involving 14,185 cases and 13,407 
controls were finally selected. The authors found a significant 
association between eNOS rs1799983 polymorphism and 
hypertension under any genetic model (T vs G: OR=1.44, 
95% CI 1.26–1.63; GT vs GG: OR=1.34, 95% CI 1.18–1.52; 
TT vs GG: OR=1.80, 95% CI 1.41–2.31; GT + TT vs GG: 
OR=1.42, 95% CI 1.25–1.63; TT vs GG + GT: OR=1.68, 95% 
CI 1.35–2.08; GT vs GG + TT: OR=1.24, 95% CI 1.11–1.40). 
Jáchymová et al.(37) showed that the T allele of the NOS G894T 
(Glu298Asp) rs1799983 SNP may be a factor in the resistance 
to conventional antihypertensive therapy. 

Despite known advances in genetic research technology, 
TRH has not yet fully taken advantage of more complex 
genetic approaches, such as GWAS, genome sequencing, 
and others used in pharmacogenomics research. Gaining a 
complete understanding of the genetic background of TRH 
is critical to predicting individual TRH risk and improving 

individual outcomes by optimizing drug therapy based on 
clinical features and genetic risk factors.

Our results indicate a significantly greater accumulation 
of the C allele and CC genotype of the AGT T704C 
(M235T) rs699 SNP among TRH patients than among patients 
with non-TRH. We found a significant association between 
the AGT T704C (M235T) rs699 SNP and the risk of TRH under 
the multiplicative genetic model  (C vs. T:  OR=1.85, 95% 
CI: 1.17-2.92, P=0.008), additive model (CC  vs.TT vs. TC; 
OR=3.00, 95% CI: 1.56-5.75, P=0.009), and recessive model 
(CC vs. TC+TT; OR=3.00, 95% CI: 1.56-5.75, P=0.0008). 
For the NOS3 G894T (Glu298Asp) rs1799983 SNP, the 
multiplicative model showed a significant risk of TRH with 
the carriage of the T allele (OR=1.99, 95% CI: 1.20-3.28, 
P=0.007), and the additive model showed a significant risk 
of TRH with the carriage of the heterozygous GT genotype 
(OR=2.25, 95% CI: 1.17-4.33, P=0.01). At the same time, the 
carriage of the G allele (OR=0.5, 95% CI: 0.30-0.83, P=0.007) 
and GG genotype (OR=0.40, 95% CI: 0.21-0.76, P=0.01) may 
be protective against the development of TRH. Further genetic 
studies of TRH may help achieve better individual outcomes 
by optimizing drug therapy based on genetic variation.
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