Using Scanning Electron Microscopy and Atomic Force Microscopy to Study the Formation of Nanoparticles on Red Blood Cell Surface in Cervical Cancer Patients

Sargylana N. Mamaeva, Irina V. Kononova, Michael Ruzhansky, Petr V. Nikiforov, Nadezhda A. Nikolaevа, Alexandr N. Pavlov, Nyurguyna F. Fedorova, Junqing Huang, Motrena N. Semenova, Daiaana V. Barashkova, Lyubov S. Frolova, Georgy V. Maksimov

International Journal of Biomedicine. 2020;10(1):70-75.
DOI: 10.21103/Article10(1)_OA12
Originally published March 15, 2020


Background: In this study, we used scanning electron microscopy (SEM) and atomic force microscopy (AFM) to examine the changes in morphology of red blood cells (RBCs) and to investigate the nanoparticles (NPs) found on their surface in cervical cancer (CC) patients undergoing radiation therapy (RT).
Methods and Results: We obtained smears of venous blood from 12 CC patients at the start, midway and at the end of external beam RT and then midway and at the end of brachytherapy. It was found that in CC patients, the number of RBCs with abnormal morphology increased and NPs appeared on their surface. During RT, the total number of abnormally shaped RBCs and the number and size of NPs increased. The RBC diameter was 8.38±0.36 μm in the control group and 9.41±0.47 μm in CC patients. The average diameter of NPs on the RBC surface  was 69.91±12.15 nm and their average height 23.75±3.70 nm. After RT, the morphology of RBCs was restored, and the formation of NPs decreased.
Conclusion: The changes observed could serve as the basis for developing efficacy indicators of cancer radiation therapy.

extracellular vesicle • red blood cell • nanoscale • morphology• radiation therapy
  1. WHO. Cancer. Cervical cancer. Available at:
  2. Ault KA. Epidemiology and natural history of human papillomavirus infections in the female genital tract. Infect Dis Obstet Gynecol. 2006;2006 Suppl: 40470.
  3. Denny L. Cervical cancer: prevention and treatment. Discov Med. 2012;14(75):125–131.
  4. Kim HK, Song KS, Park YS, Kang YH, Lee YJ, Lee KR, et al.  Elevated levels of circulating platelet microparticles: VEGF, IL-6 and RANTES in patients with gastric cancer: possible role of a metastasis predictor.  Eur J Cancer. 2003;39(2):184–191.
  5. Liu J, Hong S, Wang X, Yu Q, Li S, Yu X, et al. Increased exosomal microRNA-21 and microRNA-146a levels in the cervicovaginal lavage specimens of patients with cervical cancer. Int J Mol Sci. 2014;15(1):758–73. doi: 10.3390/ijms15010758.
  6. Jang SC, Kim SR, Yoon YJ, Park KS, Kim JH, Lee J, et al. In vivo kinetic biodistribution of nano-sized outer membrane vesicles derived from bacteria. Small. 2015;11(4):456–61. doi: 10.1002/smll.201401803.
  7. EL Andaloussi S, Mäger I, Breakefield XO, Wood MJ. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov. 2013;12(5):347-57. doi: 10.1038/nrd3978.
  8. Mangino G, Chiantore MV, Luliano M, Capriotti L, Accardi L, Bonito PD, et al. Role of Extracellular Vesicles in Human Papillomavirus-Induced Tumorigenesis: in Saxena, S. K. (ed.) Current Perspectives in Human Papillomavirus. IntechOpen. 2018 Nov 9;5:1–21. doi: 10.5772/intechopen.80654.
  9. Taylor DD and Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 2008;110(1):13–21. doi: 10.1016/j.ygyno.2008.04.033.
  10. Keller S, Konig AK, Marme F, Runz S, WolterinknS, Koensgen D, et al. Systemic presence and tumor-growth promoting effect of ovarian carcinoma released exosomes. Cancer Lett. 2009; 278(1):73–81. doi: 10.1016/j.canlet.2008.12.028.
  11. Chai H, Brown RE. Field effect in cancer-an update. Ann Clin Lab Sci. 2009;39(4):331–7.
  12. Honegger A, Schilling D, Bastian S, Sponagel J, Kuryshev V, Sultmann H, et al. Dependence of Intracellular and Exosomal microRNAs on Viral E6/E7 Oncogene Expression in HPV-positive tumor cells. PLoS Pathog. 2015 Mar 11;11(3):e1004712. doi: 10.1371/journal.ppat.1004712.
  13. Li H, Chi X, Li R, Ouyang J, Chen Y. HIV-1-infected cell-derived exosomes promote the growth and progression of cervical cancer. Int J Biol Sci. 2019;15(11):2438–2447. doi: 10.7150/ijbs.38146.
  14. Al-Mayah A, Bright S, Chapman K, Irons S, Carter D Goodwin E, et al. The non-targeted effects of radiation are perpetuated by exosomes. Mutat Res. 2015;772:38–45. doi: 10.1016/j.mrfmmm.2014.12.007.
  15. Arscott WT, Tandle AT, Zhao S, Shabason JE, Gordon IK, Schlaff CD, et al. Ionizing radiation and glioblastoma exosomes. Implications in tumor biology and cell migration. Transl Oncol. 2013; 6(6):638–48.
  16. Mutschelknaus L, Peters C, Winkler K, Yentrapalli R, Heider T,Atkinson MJ, et al. Exosomes derived from squamous head and neck cancer promote cell survival after ionizing radiation. PLoS One. 2016 Mar 23;11(3):e0152213. doi: 10.1371/journal.pone.0152213.
  17. Mutschelknaus L,Azimzadeh O, Heider T, Winkler K, Vetter M, Kell R, et al. Radiation alters the cargo of exosomes released from squamous head and neck cancer cells to promote migration of recipient cells. Sci Rep. 2017 Sep 29;7(1):12423. doi: 10.1038/s41598-017-12403-6.
  18. Tamkovich S, Tutanov O, Efimenko A, Grigor'eva A, Ryabchikova E, Kirushina N, et al. Blood Circulating Exosomes Contain Distinguishable Fractions of Free and Cell-Surface-Associated Vesicles. Curr Mol Med. 2019;19(4):273-285. doi: 10.2174/1566524019666190314120532.
  19. Huang J, Ruzhansky M, Feng H, Zheng L, Huang X, Wang H. Feature extraction for license plate location based on L0-norm smoothing. Open Comput Sci. 2019;9(1):28-135. doi: 10.1515/comp-2019-0007
  20. Xu D, Peng M, Zhang Z, Dong G, Zhang Y, Yu H. Study of damage to red blood cells exposed to different doses of γ-ray irradiation. Blood Transfus. 2012;10(3):321–30. doi: 10.2450/2012.0076-11.
  21. Abdelhalim MA, Al-Ayed MS, Moussa SA, Abd Al-Sheri Ael-H, K. The effects of gamma-radiation on red blood cell corpuscles and dimensional properties in rats. Pak J Pharm Sci. 2015;28(5 Suppl):1819–22.
  22. Minciacchi VR, Freeman MR, Di Vizio D. Extracellular Vesicles in Cancer: Exosomes, Microvesicles and the Emerging Role of Large Oncosomes. Semin Cell Dev Biol. 2015;40:41–51. doi: 10.1016/j.semcdb.2015.02.010.
  23. Lui WO, Pourmand N, Patterson BK, Fire A. Patterns of known and novel small RNAs in human cervical cancer. Cancer Research. 2007;67(13):6031–43.
  24. Mata-Rocha M,  Rodríguez-Hernández RM, Chávez-Olmos P, Garrido E, Robles-Vázquez C, Aguilar-Ruiz S, et al. Presence of HPV DNA in extracellular vesicles from HeLA cells and cervical samples. Enferm Infecc Microbiol Clín. 2019 Aug 5; pii:S0213-005X(19)30207-1. doi: 10.1016/j.eimc.2019.06.011. [Article in English, Spanish]        
  25. Huang H,  Zhu J, Fan L, Lin Q, Fu D, Wei B et al. MicroRNA Profiling of Exosomes Derived from Red Blood Cell Units: Implications in Transfusion-Related Immunomodulation. Biomed Res Int. 2019 Jun 13;2019:2045915. doi: 10.1155/2019/2045915.
  26. Harisa GI, Badran MM and Alanazi FK. Erythrocyte nanovesicles: Biogenesis, biological roles and therapeutic approach: Erythrocyte nanovesicles. Saudi Pharm J. 2017;25(1):8–17. doi: 10.1016/j.jsps.2015.06.010.
  27. Danesh A, Inglis HC, Jackman RP, Wu S, Deng X, Muench MO. Exosomes from red blood cell units bind to monocytes and induce proinflammatory cytokines, boosting T-cell responses in vitro. Blood. 2014;123(5):687–96. doi: 10.1182/blood-2013-10-530469.
  28. Jabbari N, Nawaz M and Rezaie J. Ionizing radiation increases the activity of exosomal secretory pathway in MCF-7 human breast cancer cells: A possible way to communicate resistance against radiotherapy. Int J Mol Sci. 2019 Jul 25;20(15). pii: E3649. doi: 10.3390/ijms20153649.
  29. Bagheri HS, Mousavi M, Rezabakhsh A, Rezaie J, Rasta SH, Nourazarian A, et al. Low-level laser irradiation at a high power intensity increased human endothelial cell exosome secretion via Wnt signaling. Lasers Med Sci. 2018;33(5):1131–1145. doi: 10.1007/s10103-018-2495-8.

Download Article
Received December 20, 2019.
Accepted February 14, 2020.
©2020 International Medical Research and Development Corporation.