MicroRNAs in Atrial Fibrillation: Pathophysiological Aspects and Potential Biomarkers

Aleksey M. Chaulin, Dmitriy V. Duplyakov

 
International Journal of Biomedicine. 2020;10(3):198-205.
DOI: 10.21103/Article10(3)_RA3
Originally published September 10, 2020

Abstract: 

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia associated with increased morbidity and mortality. The pathophysiological mechanisms underlying the development of AF are not entirely clear. In addition, there are no optimal biomarkers for the early detection and prognosis for patients with AF. Emerging studies have uncovered a role for miRNAs in the initiation and maintenance of CVD. This review discusses the role of miRNAs in the pathogenesis of AF as well as the possibility of using miRNAs as biomarkers for detecting and predicting AF.

Keywords: 
atrial fibrillation • microRNA• pathophysiology • biomarker
References: 
  1. Ko D, Rahman F, Martins MA, Hylek EM, Ellinor PT, Schnabel RB, Benjamin EJ, et al. Atrial fibrillation in women: treatment. Nat Rev Cardiol. 2017;14 (2):113-124. doi: 10.1038/nrcardio.2016.171.
  2. Pellman J, Sheikh F. Atrial fibrillation: mechanisms, therapeutics, and future directions. Compr Physiol. 2015;5(2):649-65. doi: 10.1002/cphy.c140047.
  3. Turagam MK, Mirza M, Werner PH, Sra J, Kress DC, Tajik AJ, Jahangir A. Circulating Biomarkers Predictive of Postoperative Atrial Fibrillation. Cardiol Rev. 2016;24(2):76-87. doi: 10.1097/CRD.0000000000000059.
  4. Chaulin AM, Karslyan LS, Bazyuk EV, Nurbaltaeva DA, Duplyakov DV. [Clinical and Diagnostic Value of Cardiac Markers in Human Biological Fluids]. Kardiologiia. 2019;59(11):66–75. doi: 10.18087/cardio.2019.11.n414
  5. Chaulin AM, Duplyakov DV. Increased cardiac troponins, not associated with acute coronary syndrome. Part 1. Kardiologiya: novosti, mneniya, obuchenie [Cardiology: News, Opinions, Training]. 2019;7(2):13–23. doi: 10.24411/2309-1908-2019-12002.
  6. Chaulin AM, Duplyakov DV. Increased cardiac troponins, not associated with acute coronary syndrome. Part 2. Kardiologiya: novosti, mneniya, obuchenie [Cardiology: News, Opinions, Training]. 2019;7(2):24–35. doi: 10.24411/2309-1908-2019-12003.
  7. Mahajan N, Mehta Y, Rose M, Shani J, Lichstein E. Elevated troponin level is not synonymous with myocardial infarction. Int J Cardiol.2006;111(3): 442-9. doi:10.1016/j.ijcard.2005.08.029
  8. Gonzalez-Del-Hoyo M, Cediel G, Carrasquer A, Bonet G. Vasquez-Nunez K, Boque C, et al. Prognostic implications of troponin I elevation in emergency department patients with tachyarrhythmia. Clin Cardiol. 2019;42 (5):546-552. doi: 10.1002/clc.23175.
  9. Zellweger MJ, Schaer BA, Cron TA, Pfisterer ME, Osswald S. Elevated troponin levels in the absence of coronary artery disease after supraventricular tachycardia. Swiss Med Wkly. 2003;133 (31–32):439–441. doi: 2003/31/smw-10288
  10. Lee SH, Park SJ, Byeon K, On YK, Kim JS, Shin DG, et al. Risk factors between patients with lone and non-lone atrial fibrillation [published correction appears in J Korean Med Sci. 2014 Aug;29(8):1183]. J Korean Med Sci. 2013;28(8):1174-1180. doi:10.3346/jkms.2013.28.8.1174
  11. Fox CS, Parise H, D'Agostino RB Sr, Lloyd-Jones DM, Vasan RS, Wang TJ, et al. Parental atrial fibrillation as a risk factor for atrial fibrillation in offspring. JAMA. 2004;291(23):2851-2855. doi: 10.1001/jama.291.23.2851.
  12. Low SK, Takahashi A, Ebana Y, Ozaki K, Christophersen IE, Ellinor PT, et al. Identification of six new genetic loci associated with atrial fibrillation in the Japanese population. Nat Genet. 2017;49(6):953-958. doi: 10.1038/ng.3842.
  13. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843-854. doi: 10.1016/0092-8674(93)90529-y.
  14. Tufekci KU, Meuwissen RL, Genc S. The role of microRNAs in biological processes. Methods Mol Biol .2014;1107:15–31. doi:10.1007/978-1-62703-748-8_2
  15. Ardekani AM, Naeini MM. The Role of MicroRNAs in Human Diseases. Avicenna J Med Biotechnol. 2010;2(4):161-179.
  16. Schetter AJ, Heegaard NH, Harris CC. Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. Carcinogenesis. 2010;31(1):37-49. doi:10.1093/carcin/bgp272
  17. Yu Z, Willmarth NE, Zhou J, Katiyar S, Wang M, Liu Y, et al. microRNA 17/20 inhibits cellular invasion and tumor metastasis in breast cancer by heterotypic signaling. Proc Natl Acad Sci U S A. 2010;107(18):8231-8236. doi:10.1073/pnas.1002080107
  18. Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. 2011;17(2):211-215. doi:10.1038/nm.2284
  19. Small EM, Olson EN. Pervasive roles of microRNAs in cardiovascular biology. Nature. 2011;469(7330):336-342. doi:10.1038/nature09783
  20. Wang GK, Zhu JQ, Zhang JT, Li Q, Li Y, He J, et al. Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J. 2010;31(6):659-666. doi:10.1093/eurheartj/ehq013
  21. Contu R, Latronico MV, Condorelli G. Circulating micro-RNAs as potential biomarkers of coronary artery disease: a promise to be fulfilled? Circ Res. 2010;107(5):573-574. doi:10.1161/CIRCRESAHA.110.227983
  22. Miller BH, Wahlestedt C. MicroRNA dysregulation in psychiatric disease. Brain Res. 2010;1338:89–99. doi:10.1016/j.brainres.2010.03.035
  23. Haramati S, Chapnik E, Sztainberg Y, Eilam R, Zwang R, Gershoni N, et al. miRNA malfunction causes spinal motor neuron disease.  Proc Natl Acad Sci U S A. 2010;107(29):13111-13116. doi:10.1073/pnas.1006151107
  24. Leeper NJ, Cooke JP. MicroRNA and mechanisms of impaired angiogenesis in diabetes mellitus. Circulation. 2011;123(3):236-238. doi:10.1161/CIRCULATIONAHA.110.003855
  25. Pandey AK, Agarwal P, Kaur K, Datta M. MicroRNAs in diabetes: tiny players in big disease. Cell Physiol Biochem. 2009;23(4-6):221-232. doi:10.1159/000218169
  26. Fulci V, Scappucci G, Sebastiani GD, Giannitti C, Franceschini D, Meloni F, et al. miR-223 is overexpressed in T-lymphocytes of patients affected by rheumatoid arthritis.  Hum Immunol. 2010;71(2):206-211. doi:10.1016/j.humimm.2009.11.008
  27. Mattes J, Collison A, Plank M, Phipps S, Foster PS. Antagonism of microRNA-126 suppresses the effector function of TH2 cells and the development of allergic airways disease. Proc Natl Acad Sci U S A. 2009;106(44):18704-18709. doi:10.1073/pnas.0905063106
  28. Polikepahad S, Knight JM, Naghavi AO, Oplt T, Creighton CJ, Shaw C,et al. Proinflammatory role for let-7 microRNAS in experimental asthma. J Biol Chem. 2010;285(39):30139-30149. doi:10.1074/jbc.M110.145698
  29. van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U S A. 2006;103(48):18255-18260. doi:10.1073/pnas.0608791103
  30. Luo X, Yang B, Nattel S. MicroRNAs and atrial fibrillation: mechanisms and translational potential. Nat Rev Cardiol. 2015;12(2):80-90. doi:10.1038/nrcardio.2014.178
  31. Arora P, Wu C, Khan AM, Bloch DB, Davis-Dusenbery BN, Ghorbani A, et al. Atrial natriuretic peptide is negatively regulated by microRNA-425. J Clin Invest. 2013;123(8):3378-3382. doi:10.1172/JCI67383
  32. van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM,  Naseem RH, Marshall WS, et al. Dysregulation of microRNAs aftermyocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A. 2008;105(35):13027-13032. doi:10.1073/pnas.0805038105
  33. Girmatsion Z, Biliczki P, Bonauer A, Wimmer-Greinecker G, Scherer M, Moritz A, et al. Changes inmicroRNA-1 expression and IK1 up-regulation in human atrial fibrillation. Heart Rhythm. 2009;6(12):1802-1809. doi:10.1016/j.hrthm.2009.08.035
  34. Cardin S, Guasch E, Luo X, Naud P, Quang KL, Shi YF, et al. Role forMicroRNA-21 in atrial profibrillatory fibrotic remodeling associated with experimental postinfarction heart failure. Circ Arrhythm Electrophysiol. 2012;5(5):1027-1035. doi:10.1161/CIRCEP.112.973214
  35. Duisters RF, Tijsen AJ, Schroen B, Leenders JJ, Lentink V, van der Made I, et al. miR-133 and miR-30 Regulate Connective Tissue Growth Factor. Circ Res. 2009;104(2):170-178. doi:10.1161/CIRCRESAHA.108.182535
  36. Hodgkinson CP, Kang MH, Dal-Pra S, Mirotsou M, Dzau VJ. MicroRNAs and Cardiac Regeneration. Circ Res. 2015;116(10):1700-1711. doi: 10.1161/CIRCRESAHA.116.304377.
  37. van Rooij E, Olson EN. MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat Rev Drug Discov. 2012;11(11):860-872. doi:10.1038/nrd3864
  38. Weckbach LT, Grabmaier U, Clauss S, Wakili R. MicroRNAs as a diagnostic tool for heart failure and atrial fibrillation. Curr Opin Pharmacol. 2016;27:24-30. doi:10.1016/j.coph.2016.01.001
  39. van den Berg NWE, Kawasaki M, Berger WR, Neefs J, Meulendijks E, Tijsen AJ, de Groot JR. MicroRNAs in Atrial Fibrillation: from Expression Signatures to Functional Implications. Cardiovasc Drugs Ther. 2017;31(3):345-365. doi: 10.1007/s10557-017-6736-z.
  40. Chaldoupi SM, Loh P, Hauer RN, de Bakker JM, van Rijen HV. The role of connexin40 in atrial fibrillation. Cardiovasc Res. 2009;84(1):15-23. doi: 10.1093/cvr/cvp203.
  41. Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 2006;38(2):228-233. doi:10.1038/ng1725
  42. Jia X, Zheng S, Xie X, Zhang Y, Wang W, Wang Z, et al. MicroRNA-1 accelerates the shortening of atrial effective refractory period by regulating KCNE1 and KCNB2 expression: an atrial tachypacing rabbit model. PLoS One. 2013;8(12):e85639. doi: 10.1371/journal.pone.0085639
  43. Tsoporis JN, Fazio A, Rizos IK, Izhar S, Proteau G, Salpeas V, et al. Increased right atrial appendage apoptosis is associated with differential regulation of candidate MicroRNAs 1 and 133A in patients who developed atrial fibrillation after cardiac surgery. J Mol Cell Cardiol. 2018;121:25-32. doi: 10.1016/j.yjmcc.2018.06.005.
  44. Li YD, Hong YF, Yusufuaji Y, Tang BP, Zhou XH, Xu GJ, et al. Altered expression of hyperpolarization-activated cyclic nucleotide-gated channels and microRNA-1 and -133 in patients with age-associated atrial fibrillation. Mol Med Rep. 2015;12(3):3243-3248. doi: 10.3892/mmr.2015.3831.
  45. Girmatsion Z, Biliczki P, Bonauer A, Wimmer-Greinecker G, Scherer M, Moritz A, et al. Changes in microRNA-1 expression and IK1 up-regulation in human atrial fibrillation. Heart Rhythm. 2009;6(12):1802-1809. doi: 10.1016/j.hrthm.2009.08.035.
  46. Lu Y, Hou S, Huang D, Luo X, Zhang J, Chen J, Xu W. Expression profile analysis of circulating microRNAs and their effects on ion channels in Chinese atrial fibrillation patients. Int J Clin Exp Med. 2015;8(1):845-853. Published 2015 Jan 15.
  47. Santulli G, Iaccarino G, De Luca N, Trimarco B, Condorelli G. Atrial fibrillation and microRNAs. Front Physiol 2014;5:15. doi: 10.3389/fphys.2014.00015.
  48. Lu Y, Zhang Y, Wang N, Pan Z, Gao X, Zhang F, et al. MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation. Circulation. 2010;122(23):2378-2387. doi: 10.1161/CIRCULATIONAHA.110.958967.
  49. Kim GH. MicroRNA regulation of cardiac conduction and arrhythmias. Transl Res. 2013;161(5):381-392. doi: 10.1016/j.trsl.2012.12.004.
  50. Soeki T, Matsuura T, Bando S, Tobiume T, Uematsu E, Ise T, et al. Relationship between local production of microRNA-328 and atrial substrate remodeling in atrial fibrillation. J Cardiol. 2016;68(6):472-477. doi: 10.1016/j.jjcc.2015.12.007.
  51. Ling TY, Wang XL, Chai Q, Lau TW, Koestler CM, Park SJ, et al. Regulation of the SK3 channel by microRNA-499--potential role in atrial fibrillation. Heart Rhythm. 2013;10(7):1001-1009. doi: 10.1016/j.hrthm.2013.03.005.
  52. Ling TY, Wang XL, Chai Q, Lu T, Stulak JM, Joyce LD, et al. Regulation of cardiac CACNB2 by microRNA-499: Potential role in atrial fibrillation. BBA Clin. 2017;7:78-84. doi: 10.1016/j.bbacli.2017.02.002.
  53. da Silva AMG, de Araujo JNG, de Oliveira KM, Novaes AEM, Lopes MB, de Sousa JCV, Filho AAA, et al. Circulating miRNAs in acute new-onset atrial fibrillation and their target mRNA network. J Cardiovasc Electrophysiol. 2018;29(8):1159-1166. doi: 10.1111/jce.13612.
  54. Xu J, Cui G, Esmailian F, Plunkett M, Marelli D, Ardehali A, et al. Atrial extracellular matrix remodeling and the maintenance of atrial fibrillation. Circulation. 2004;109(3):363-368. doi:10.1161/01.CIR.0000109495.02213.52
  55. Liu H, Chen GX, Liang MY, Qin H, Rong J, Yao JP, Wu ZK. Atrial fibrillation alters the microRNA expression profiles of the left atria of patients with mitral stenosis. BMC Cardiovasc Disord. 2014;14:10. doi: 10.1186/1471-2261-14-10.
  56. Barana A, Matamoros M, Dolz-Gaiton P, Pérez-Hernández M, Amoros I, Nunez M, et al. Chronic atrial fibrillation increases microRNA-21 in human atrial myocytes decreasing L-type calcium current. Circ Arrhythm Electrophysiol. 2014;7(5):861-868. doi: 10.1161/CIRCEP.114.001709.
  57. Adam O, Lohfelm B, Thum T, Gupta SK, Puhl SL, Schafers HJ, et al. Role of miR-21 in the pathogenesis of atrial fibrosis. Basic Res Cardiol. 2012;107(5):278. doi: 10.1007/s00395-012-0278-0.
  58. Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456(7224):980-984. doi: 10.1038/nature07511.
  59. Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002;296(5573):1655‐1657. doi:10.1126/science.296.5573.1655
  60. Zhang K, Zhao L, Ma Z, Wang W, Li X, Zhang Y, et al. Doxycycline Attenuates Atrial Remodeling by Interfering with MicroRNA-21 and Downstream Phosphatase and Tensin Homolog (PTEN)/Phosphoinositide 3-Kinase (PI3K) Signaling Pathway. Med Sci Monit. 2018;24:5580-5587. doi: 10.12659/MSM.909800.
  61. van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A. 2008;105(35):13027-13032. doi:10.1073/pnas.0805038105
  62. Kriegel AJ, Liu Y, Fang Y, Ding X, Liang M. The miR-29 family: genomics, cell biology, and relevance to renal and cardiovascular injury. Physiol Genomics. 2012;44(4):237-244. doi: 10.1152/physiolgenomics.00141.2011.
  63. Dawson K, Wakili R, Ordog B, Clauss S, Chen Y, Iwasaki Y, et al. MicroRNA29: a mechanistic contributor and potential biomarker in atrial fibrillation. Circulation. 2013;127(14):1466-1475, 1475e1-28. doi: 10.1161/CIRCULATIONAHA.112.001207.
  64. Liakouli V, Cipriani P, Di Benedetto P, Panzera N, Ruscitti P, Pantano I, et al. Epidermal Growth Factor Like-domain 7 and miR-126 are abnormally expressed in diffuse Systemic Sclerosis fibroblasts. Sci Rep. 2019;9(1):4589. Published 2019 Mar 14. doi:10.1038/s41598-019-39485-8
  65. Wei XJ, Han M, Yang FY, Wei GC, Liang ZG, Yao H, et al. Biological significance of miR-126 expression in atrial fibrillation and heart failure. Braz J Med Biol Res. 2015;48(11):983-989. doi: 10.1590/1414-431X20154590.
  66. McManus DD, Tanriverdi K, Lin H, Esa N, Kinno M, Mandapati D, et al. Plasma microRNAs are associated with atrial fibrillation and change after catheter ablation (the miRhythm study). Heart Rhythm. 2015;12(1):3-10. doi: 10.1016/j.hrthm.2014.09.050.
  67. Goren Y, Meiri E, Hogan C, Mitchell H, Lebanony D, Salman N, et al. Relation of reduced expression of MiR-150 in platelets to atrial fibrillation in patients with chronic systolic heart failure. Am J Cardiol. 2014;113(6):976-981. doi: 10.1016/j.amjcard.2013.11.060.
  68. Lutter D, Marr C, Krumsiek J, Lang EW, Theis FJ. Intronic microRNAs support their host genes by mediating synergistic and antagonistic regulatory effects. BMC Genomics. 2010;11:224. Published 2010 Apr 6. doi:10.1186/1471-2164-11-224
  69. Qiao Y, Ma N, Wang X, Hui Y, Li F, Xiang Y et al. MiR-483-5p controls angiogenesis in vitro and targets serum response factor. FEBS Lett. 2011;585(19):3095-3100. doi:10.1016/j.febslet.2011.08.039
  70. Harling L, Lambert J, Ashrafian H, Darzi A, Gooderham NJ, Athanasiou T. Elevated serum microRNA 483-5p levels may predict patients at risk of post-operative atrial fibrillation. Eur J Cardiothorac Surg. 2017;51(1):73-78. doi: 10.1093/ejcts/ezw245.
  71. Wang YC, Hu YW, Sha YH, Gao JJ, Ma X, Li SF, et al. Ox-LDL Upregulates IL-6 Expression by Enhancing NF-κB in an IGF2-Dependent Manner in THP-1 Macrophages. Inflammation. 2015;38(6):2116-2123. doi:10.1007/s10753-015-0194-1
  72. Chen PS, Chen LS, Fishbein MC, Lin SF, Nattel S. Role of the autonomic nervous system in atrial fibrillation: pathophysiology and therapy. Circ Res. 2014;114(9):1500-1515. doi:10.1161/CIRCRESAHA.114.303772
  73. Patterson E, Po SS, Scherlag BJ, Lazzara R. Triggered firing in pulmonary veins initiated by in vitro autonomic nerve stimulation. Heart Rhythm. 2005;2(6):624-631. doi:10.1016/j.hrthm.2005.02.012
  74. Rao M, Hu J, Zhang Y, Gao F, Zhang F, Yang Z, et al. Time-dependent cervical vagus nerve stimulation and frequency-dependent right atrial pacing mediates induction of atrial fibrillation. Anatol J Cardiol. 2018;20(4):206-212. doi: 10.14744/AnatolJCardiol.2018.73558.
  75. Shen MJ, Choi EK, Tan AY, Lin SF, Fishbein MC, Chen LS, Chen PS. Neural mechanisms of atrial arrhythmias. Nat Rev Cardiol. 2011;9(1):30-39. doi: 10.1038/nrcardio.2011.139.
  76. Morishima M, Iwata E, Nakada C, Tsukamoto Y, Takanari H, Miyamoto S, et al. Atrial Fibrillation-Mediated Upregulation of miR-30d Regulates Myocardial Electrical Remodeling of the G-Protein-Gated K(+) Channel, IK.ACh. Circ J. 2016;80(6):1346-1355. doi: 10.1253/circj.CJ-15-1276.
  77. Zhang Y, Zheng S, Geng Y, Xue J, Wang Z, Xie X, et al. MicroRNA profiling of atrial fibrillation in canines: miR-206 modulates intrinsic cardiac autonomic nerve remodeling by regulating SOD1. PLoS One. 2015;10(3):e0122674. doi: 10.1371/journal.pone.0122674.
  78. Wei J, Zhang Y, Li Z, Wang X, Chen L, Du J, et al. GCH1 attenuates cardiac autonomic nervous remodeling in canines with atrial-tachypacing via tetrahydrobiopterin pathway regulated by microRNA-206. Pacing Clin Electrophysiol. 2018;41(5):459-471. doi: 10.1111/pace.13289.
  79. Voigt N, Li N, Wang Q, Wang W, Trafford AW, Abu-Taha I, et al. Enhanced sarcoplasmic reticulum Ca2+ leak and increased Na+-Ca2+ exchanger function underlie delayed afterdepolarizations in patients with chronic atrial fibrillation. Circulation. 2012;125(17):2059-2070. doi:10.1161/CIRCULATIONAHA.111.067306
  80. Denham NC, Pearman CM, Caldwell JL, Madders GWP, Eisner DA, Trafford AW, Dibb KM. Calcium in the Pathophysiology of Atrial Fibrillation and Heart Failure. Front Physiol. 2018;9:1380. doi: 10.3389/fphys.2018.01380.
  81. Harada M, Luo X, Murohara T, Yang B, Dobrev D, Nattel S. MicroRNA regulation and cardiac calcium signaling: role in cardiac disease and therapeutic potential. Circ Res. 2014;114(4):689-705. doi: 10.1161/CIRCRESAHA.114.301798.
  82. Chiang DY, Kongchan N, Beavers DL, Alsina KM, Voigt N, Neilson JR, et al. Loss of microRNA-106b-25 cluster promotes atrial fibrillation by enhancing ryanodine receptor type-2 expression and calcium release. Circ Arrhythm Electrophysiol. 2014;7(6):1214-1222. doi:10.1161/CIRCEP.114.001973
  83. Canon S, Caballero R, Herraiz-Martínez A, Perez-Hernández M, Lopez B, Atienza F, et al. miR-208b upregulation interferes with calcium handling in HL-1 atrial myocytes: Implications in human chronic atrial fibrillation. J Mol Cell Cardiol. 2016;99:162-173. doi: 10.1016/j.yjmcc.2016.08.012.
  84. Downing GL, NIH Definitions Working Group. Biomarkers and surrogate endpoints in clinical research: definitions and conceptual model. In Biomarkers and Surrogate Endpoints: Clinical Research and Applications, 1–9. Elsevier, Amsterdam, UK; 2000.
  85. BEST (Biomarkers, EndpointS, and Other Tools) Resource [Internet]. FDA-NIH Biomarker Working Group. Silver Spring (MD): Food and Drug Administration (US); Bethesda (MD): National Institutes of Health (US); 2016-.2016. Available from: https://www.ncbi.nlm.nih.gov/books/NBK338448/
  86. D’Alessandra Y, Devanna P, Limana F, Straino S, Di Carlo A, Brambilla PG, et al. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J. 2010;31:2765-2773. doi: 10.1093/eurheartj/ehq167
  87. Felekkis K, Papaneophytou C. Challenges in Using Circulating Micro-RNAs as Biomarkers for Cardiovascular Diseases. Int J Mol Sci. 2020;21(2):561. Published 2020 Jan 15. doi:10.3390/ijms21020561
  88. Natsume Y, Oaku K, Takahashi K, Nakamura W, Oono A, Hamada S, et al. Combined Analysis of Human and Experimental Murine Samples Identified Novel Circulating MicroRNAs as Biomarkers for Atrial Fibrillation. Circ J. 2018;82(4):965-973. doi: 10.1253/circj.CJ-17-1194.
  89. Zampetaki A, Willeit P, Drozdov I, Kiechl S, Mayr M. Profiling of circulating microRNAs: from single biomarkers to re-wired networks. Cardiovasc Res. 2012; 93 (4): 555-562. doi: 10.1093/cvr/cvr266.

Download Article
Received June 5, 2020.
Accepted July 31, 2020.
©2020 International Medical Research and Development Corporation.