Assessment of Brain Lesions in Type 2 Diabetes Mellitus and Hypertension using Magnetic Resonance imaging

Qurain Turki Alshammari, Mohammed Salih, Moawia Gameraddin, Bushra Abdelmalik, Sultan Alshoabi, Elfadil Elnour, Elgeili Yousif

 
International Journal of Biomedicine. 2020;10(4):382-386.
DOI: 10.21103/Article10(4)_OA10
Originally published December 10, 2020

Abstract: 

Background: Type 2 diabetes mellitus (T2DM) and hypertension (HTN) are risk factors for the spectrum of brain lesions. In this paper, we studied the impact of T2DM and HTN on the incidence of several brain lesions diagnosed with magnetic resonance imaging (MRI).
Methods and Results: This retrospective, single-center study was conducted at Royal Care International Hospital (Khartoum, Sudan) from January 2016 to December 2016 and included 80 patients (40 male and 40 female, aged between 20 years and 90 years) with suspected brain disorders. MRI brain examinations were conducted on a 1.5 Tesla MRI system (Toshiba Medical Systems, Tokyo, Japan). The following sequences were analyzed: T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), fluid-attenuated inversion recovery (FLAIR), and diffusion-weighted imaging (DWI). Brain lesions were characterized by magnetic imaging spectroscopy and histopathological analysis. Binary logistic regression analysis was used to establish a mathematical model of the relationship between T2DM/HTN and the prevalence of brain lesions.
Among 80 patients, HTN, T2D, and the combination of T2D and HTN were identified in 18(22.5%), 9(11.2%), and 11(13.8%) patients, respectively. Brain lesions were found in 48(60%) patients and were most prevalent in the age group of 66-80 years. The brain lesions included ischemic brain infarction (IBI) (22.5%), brain tumors (11.2%), cerebral hemorrhages (6.2%), brain atrophy (BA) (1.2 %), IBI with BA (16.2%), and brain metastases (2.5%). Regression analysis showed that HTN and T2DM were associated with significantly higher ORs for brain lesions ([OR=2.459, 95% CI: 1.673–3.614, P<0.001] and [OR=1.507, 95% CI: 1.067–2.128, P= 0.042], and [OR=1.078, 95% CI:1.033–1.124, P=0.001], respectively). HTN was associated with significantly higher OR for ischemic brain infarction (OR=7.404, 95% CI: 2.600–21.081, P<0.001).
Conclusion: The study showed a significant interaction between HTN and T2DM on the prevalence of brain lesions, especially ischemic brain infarction and brain atrophy.

Keywords: 
brain lesions • MRI • ischemic brain infarction • diabetes • hypertension
References: 
  1. Beeri MS, Silverman JM, Davis KL, et al. Type 2 diabetes is negatively associated with Alzheimer's disease neuropathology. J Gerontol A Biol Sci Med Sci. 2005;60(4):471-475. doi:10.1093/gerona/60.4.471
  2. Arvanitakis Z, Schneider JA, Wilson RS, et al. Diabetes is related to cerebral infarction but not to AD pathology in older persons. Neurology. 2006;67(11):1960-1965. doi:10.1212/01.wnl.0000247053.45483.4e
  3. Sonnen JA, Larson EB, Brickell K, et al. Different patterns of cerebral injury in dementia with or without diabetes. Arch Neurol. 2009;66(3):315-322. doi:10.1001/archneurol.2008.579
  4. Zimering MB, Patel D, Bahn G. Type 2 Diabetes Predicts Increased Risk of Neurodegenerative Complications in Veterans Suffering Traumatic Brain Injury. J Endocrinol Diabetes. 2019;6(3):137. doi:10.15226/2374-6890/6/3/001137
  5. Provost C, Soudant M, Legrand L, et al. Magnetic Resonance Imaging or Computed Tomography Before Treatment in Acute Ischemic Stroke. Stroke. 2019;50(3):659-664. doi:10.1161/STROKEAHA.118.023882
  6. Karnath HO, Sperber C, Rorden C. Mapping human brain lesions and their functional consequences. Neuroimage. 2018;165:180-189. doi:10.1016/j.neuroimage.2017.10.028
  7. Mehrabian H, Detsky J, Soliman H, Sahgal A, Stanisz GJ. Advanced Magnetic Resonance Imaging Techniques in Management of Brain Metastases. Front Oncol. 2019;9:440. Published 2019 Jun 4. doi:10.3389/fonc.2019.00440
  8. Zhu H, Barker PB. MR spectroscopy and spectroscopic imaging of the brain. Methods Mol Biol. 2011;711:203-226. doi:10.1007/978-1-61737-992-5_9
  9. Unger T, Borghi C, Charchar F, et al. 2020 International Society of Hypertension global hypertension practice guidelines. J Hypertens. 2020;38(6):982-1004. doi:10.1097/HJH.0000000000002453
  10. Liberopoulos EN, Florentin M, Kei A, Mountzouri E, Agouridis A, Elisaf MS. Comparison of hemoglobin A1c and fasting glucose criteria to diagnose diabetes among people with metabolic syndrome and fasting glucose above 100 mg/dL (5.5 mmol/L). J Clin Hypertens (Greenwich). 2010;12(7):543-548. doi:10.1111/j.1751-7176.2010.00318.x
  11. Nation DA, Edmonds EC, Bangen KJ, et al. Pulse pressure in relation to tau-mediated neurodegeneration, cerebral amyloidosis, and progression to dementia in very old adults. JAMA Neurol. 2015;72(5):546-553. doi:10.1001/jamaneurol.2014.4477
  12. Jochemsen HM, Muller M, Visseren FL, et al. Blood pressure and progression of brain atrophy: the SMART-MR Study. JAMA Neurol. 2013;70(8):1046-1053. doi:10.1001/jamaneurol.2013.217
  13. de Leeuw FE, de Groot JC, Oudkerk M, et al. Hypertension and cerebral white matter lesions in a prospective cohort study. Brain. 2002;125(Pt 4):765-772. doi:10.1093/brain/awf077
  14. Debette S, Seshadri S, Beiser A, et al. Midlife vascular risk factor exposure accelerates structural brain aging and cognitive decline. Neurology. 2011;77(5):461-468. doi:10.1212/WNL.0b013e318227b227
  15. Launer LJ. Epidemiology of white matter lesions. Top Magn Reson Imaging. 2004;15(6):365-367. doi:10.1097/01.rmr.0000168216.98338.8d
  16. DeCarli C, Miller BL, Swan GE, et al. Predictors of brain morphology for the men of the NHLBI twin study. Stroke. 1999;30(3):529-536. doi:10.1161/01.str.30.3.529
  17. Korf ES, White LR, Scheltens P, Launer LJ. Midlife blood pressure and the risk of hippocampal atrophy: the Honolulu Asia Aging Study. Hypertension. 2004;44(1):29-34. doi:10.1161/01.HYP.0000132475.32317.bb
  18. Swan GE, DeCarli C, Miller BL, et al. Association of midlife blood pressure to late-life cognitive decline and brain morphology. Neurology. 1998;51(4):986-993. doi:10.1212/wnl.51.4.986
  19. den Heijer T, Launer LJ, Prins ND, et al. Association between blood pressure, white matter lesions, and atrophy of the medial temporal lobe. Neurology. 2005;64(2):263-267. doi:10.1212/01.WNL.0000149641.55751.2E
  20. Skoog I, Andreasson LA, Landahl S, Lernfelt B. A population-based study on blood pressure and brain atrophy in 85-year-olds. Hypertension. 1998;32(3):404-409. doi:10.1161/01.hyp.32.3.404
  21. Roberts RO, Knopman DS, Przybelski SA, et al. Association of type 2 diabetes with brain atrophy and cognitive impairment. Neurology. 2014;82(13):1132-1141. doi:10.1212/WNL.0000000000000269
  22. Moran C, Phan TG, Chen J, et al. Brain atrophy in type 2 diabetes: regional distribution and influence on cognition. Diabetes Care. 2013;36(12):4036-4042. doi:10.2337/dc13-0143
  23. Zeger M, Popken G, Zhang J, et al. Insulin-like growth factor type 1 receptor signaling in the cells of oligodendrocyte lineage is required for normal in vivo oligodendrocyte development and myelination. Glia. 2007;55(4):400-411. doi:10.1002/glia.20469
  24. Freude S, Schilbach K, Schubert M. The role of IGF-1 receptor and insulin receptor signaling for the pathogenesis of Alzheimer's disease: from model organisms to human disease. Curr Alzheimer Res. 2009;6(3):213-223. doi:10.2174/156720509788486527
  25. Guo H, Song X, Vandorpe R, et al. Evaluation of common structural brain changes in aging and Alzheimer disease with the use of an MRI-based brain atrophy and lesion index: a comparison between T1WI and T2WI at 1.5T and 3T. AJNR Am J Neuroradiol. 2014;35(3):504-512. doi:10.3174/ajnr.A3709
  26. Jagust WJ, Zheng L, Harvey DJ, et al. Neuropathological basis of magnetic resonance images in aging and dementia. Ann Neurol. 2008;63(1):72-80. doi:10.1002/ana.21296
  27. Kim KW, MacFall JR, Payne ME. Classification of white matter lesions on magnetic resonance imaging in elderly persons. Biol Psychiatry. 2008;64(4):273-280. doi:10.1016/j.biopsych.2008.03.024
  28. Lane CA, Barnes J, Nicholas JM, et al. Associations Between Vascular Risk Across Adulthood and Brain Pathology in Late Life: Evidence From a British Birth Cohort. JAMA Neurol. 2020;77(2):175-183. doi:10.1001/jamaneurol.2019.3774
  29. Bos D, Poels MM, Adams HH, et al. Prevalence, Clinical Management, and Natural Course of Incidental Findings on Brain MR Images: The Population-based Rotterdam Scan Study. Radiology. 2016;281(2):507-515. doi:10.1148/radiol.2016160218
  30. Gu T, Fu C, Shen Z, et al. Age-Related Whole-Brain Structural Changes in Relation to Cardiovascular Risks Across the Adult Age Spectrum. Front Aging Neurosci. 2019;11:85. Published 2019 Apr 24. doi:10.3389/fnagi.2019.00085
  31. Heidemann C, Boeing H, Pischon T, Nöthlings U, Joost HG, Schulze MB. Association of a diabetes risk score with risk of myocardial infarction, stroke, specific types of cancer, and mortality: a prospective study in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam cohort. Eur J Epidemiol. 2009;24(6):281-288. doi:10.1007/s10654-009-9338-7
  32. Saltzman BS, Doherty JA, Hill DA, et al. Diabetes and endometrial cancer: an evaluation of the modifying effects of other known risk factors. Am J Epidemiol. 2008;167(5):607-614. doi:10.1093/aje/kwm333
  33. Ben Q, Cai Q, Li Z, et al. The relationship between new-onset diabetes mellitus and pancreatic cancer risk: a case-control study. Eur J Cancer. 2011;47(2):248-254. doi:10.1016/j.ejca.2010.07.010
  34. Wang CS, Yao WJ, Chang TT, Wang ST, Chou P. The impact of type 2 diabetes on the development of hepatocellular carcinoma in different viral hepatitis statuses. Cancer Epidemiol Biomarkers Prev. 2009;18(7):2054-2060. doi:10.1158/1055-9965.EPI-08-1131
  35. Tong JJ, Tao H, Hui OT, Jian C. Diabetes mellitus and risk of brain tumors: A meta-analysis. Exp Ther Med. 2012;4(5):877-882. doi:10.3892/etm.2012.698

Download Article
Received August 21, 2020.
Accepted September 19, 2020.
©2020 International Medical Research and Development Corporation.