Using Ki-67 Mitotic Activity Markers as a Predictor of the Progression of Adhesions in the Abdominal Cavity

Irina A. Shurygina, Michael G. Shurygin, Elena E. Chepurnykh, Nataliya I. Ayushinova

 
International Journal of Biomedicine. 2020;10(4):412-415.
DOI: 10.21103/Article10(4)_OA16
Originally published December 10, 2020

Abstract: 

Background: Ki-67 is a nuclear protein expressed in all proliferating cells of vertebrates during mitotic cycle phases S, G1, G2, and M, except for G0. Studying this marker is widely used to diagnose the proliferative activity of tumors. However, studying Ki-67 in non-neoplastic diseases attracts much less attention among the researchers. The aim of this study was to assess the possibility of using staining for Ki-67 to identify the proliferative potential of fibroblasts during the formation of adhesions in the abdominal cavity (AC).
Methods and Results: Experiments were carried out on male Wistar rats. The adhesion process in AC was simulated in the control group (n=25), and in the experimental group (n=25) with the administration of Seroguard®. Animals were sacrificed on Days 1–30, and the severity of the adhesive process in AC was assessed. Histological sections were prepared and stained for Ki-67. It was found that the animals of the control group had increased severity of the adhesive process in AC during the observation. Maximum increase in severity was registered on Day 30 – 12[9-13] points in the control group and 4[4-4] points in the experimental group (P=0.0079). High proliferative activity of fibroblasts in the control group was detected on Days 3, 7, 14 and 30, which may indicate an active division of fibroblasts and the formation of adhesions in the damaged area. In the experimental group, single Ki-67 positive cells were noted during the entire observation period, which may point to a reduced potential for the formation of adhesions.
Conclusion: Our study showed the prospects of using Ki-67 staining to determine the severity of the developing adhesive process in AC, and also revealed one of the possible mechanisms that inhibit the formation of the adhesive process when using Seroguard® – a decrease in the mitotic activity of fibroblasts in the area of peritoneal injury.

Keywords: 
adhesive process • mitotic activity • Ki-67 • p38 MAPK
References: 
  1. Vashchenko LN, Karnaukhov NS, Gudtskova TN, Kvarchiya MV. [Comparison of the expression level of proliferation markers Ki-67 and cyclin D1 in triple negative breast cancer with different androgenic status]. Sovremennye Problemy Nauki i Obrazovaniya. 2018;4:146.[Article in Russian].
  2. Gerdes J, Schwab U, Lemke H, Stein H. Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. Int J Cancer. 1983;31:13-20. doi: 10.1002/ijc.2910310104.
  3. Endl E, Gerdes J. The Ki-67 protein: fascinating forms and an unknown function. Exp Cell Res. 2000;257(2):231-237. doi: 10.1006/excr.2000.4888.
  4. Chierico L, Rizzello L, Guan L, Joseph AS, Lewis A, Battaglia G. The role of the two splice variants and extranuclear pathway on Ki-67 regulation in non-cancer and cancer cells. PLoS One. 2017;12(2):e0171815. doi: 10.1371/journal.pone.0171815.
  5. Sobecki M, Mrouj K, Colinge J, Gerbe F, Jay P, Krasinska L, et al. Cell-cycle regulation accounts for variability in Ki-67 expression levels. Cancer Res. 2017;77(10):2722-2734. doi: 10.1158/0008-5472.CAN-16-0707.
  6. Chen X, He C, Han D, Zhou M, Wang Q, Tian J, et al. The predictive value of Ki-67 before neoadjuvant chemotherapy for breast cancer: a systematic review and meta-analysis. Future Oncol. 2017;13(9):843-857. doi: 10.2217/fon-2016-0420.
  7. Tagliafico AS, Bignotti B, Rossi F, Matos J, Calabrese M, Valdora F, Houssami N. Breast cancer Ki-67 expression prediction by digital breast tomosynthesis radiomics features. Eur Radiol Exp. 2019;3(1):36. doi: 10.1186/s41747-019-0117-2.
  8. Folescu R, Levai CM, Grigoraş ML, Arghirescu TS, Talpoş IC, Gîndac CM, et al. Expression and significance of Ki-67 in lung cancer. Rom J Morphol Embryol. 2018;59(1):227-233.
  9. Berlin A, Castro-Mesta JF, Rodriguez-Romo L, Hernandez-Barajas D, González-Guerrero JF, Rodríguez-Fernández IA, et al. Prognostic role of Ki-67 score in localized prostate cancer: A systematic review and meta-analysis. Urol Oncol. 2017;35(8):499-506. doi: 10.1016/j.urolonc.2017.05.004.
  10. Menon SS, Guruvayoorappan C, Sakthivel KM, Rasmi RR. Ki-67 protein as a tumour proliferation marker. Clin Chim Acta. 2019;491:39-45. doi: 10.1016/j.cca.2019.01.011.
  11. Seo SH, Kim KH, Oh SH, Choi Y, Ahn KJ, Lee JY, et al. Ki-67 labeling index as a prognostic marker in advanced stomach cancer. Ann Surg Treat Res. 2019;96(1):27-33. doi: 10.4174/astr.2019.96.1.27.
  12. Alkhaibary A, Alassiri AH, AlSufiani F, Alharbi MA. Ki-67 labeling index in glioblastoma; does it really matter? Hematol Oncol Stem Cell Ther. 2019;12(2):82-88. doi: 10.1016/j.hemonc.2018.11.001.
  13. Wong E, Nahar N, Hau E, Varikatt W, Gebski V, Ng T, et al. Cut-point for Ki-67 proliferation index as a prognostic marker for glioblastoma. Asia Pac J Clin Oncol. 2019;15(1):5-9. doi: 10.1111/ajco.12826.
  14. Betz P, Nerlich A, Wilske J, Tübel J, Penning R, Eisenmenger W. The time-dependent localization of Ki 67 antigen-positive cells in human skin wounds. Int J Legal Med. 1993;106(1):35-40. doi: 10.1007/BF01225022.
  15. Ronan N, Bennett DM, Khan KA, McCarthy Y, Dahly D, Bourke L, Chelliah A, Cavazza A, O'Regan K, Moloney F, Plant BJ, Henry MT. Tissue and Bronchoalveolar Lavage Biomarkers in Idiopathic Pulmonary Fibrosis Patients on Pirfenidone. Lung. 2018 Oct;196(5):543-552. doi: 10.1007/s00408-018-0140-8. 
  16. Krishnan P, Purushothaman KR, Purushothaman M, Turnbull IC, Tarricone A, Vasquez M, et al. Enhanced neointimal fibroblast, myofibroblast content and altered extracellular matrix composition: Implications in the progression of human peripheral artery restenosis. Atherosclerosis. 2016;251:226-233. doi: 10.1016/j.atherosclerosis.2016.06.046.
  17. Berger I, Weckauf H, Helmchen B, Ehemann V, Penzel R, Fink B, et al. Rheumatoid arthritis and pigmented villonodular synovitis: comparative analysis of cell polyploidy, cell cycle phases and expression of macrophage and fibroblast markers in proliferating synovial cells. Histopathology. 2005;46(5):490-497. doi: 10.1111/j.1365-2559.2005.01959.x.
  18. Dumoitier N, Chaigne B, Régent A, Lofek S, Mhibik M, Dorfmüller P, et al. Scleroderma peripheral B lymphocytes secrete interleukin-6 and transforming growth factor β and activate fibroblasts. Arthritis Rheumatol. 2017;69(5):1078-1089. doi: 10.1002/art.40016.
  19. Davydov DA, Mavricheva LA, Cherstvyi ED. [Immunohistochemical characteristics of Ki-67 proliferation marker expression in combination of uterine leiomyoma with adenomyosis]. Meditsinskiy zhurnal. 2016;1(55):92-96. [Article in Russian].
  20. El-Zammar O, Rosenbaum P, Katzenstein ALA. Proliferative activity in fibrosing lung diseases: a comparative study of Ki-67 immunoreactivity in diffuse alveolar damage, bronchiolitis obliterans-organizing pneumonia, and usual interstitial pneumonia. Hum Pathol. 2009;40(8):1182-1188. doi: 10.1016/j.humpath.2009.01.006.
  21. Saygun I, Ozdemir A, Günhan O, Aydintuğ YS, Karslioğlu Y. Hereditary gingival fibromatosis and expression of Ki-67 antigen: a case report. J Periodontol. 2003;74(6):873-878. doi: 10.1902/jop.2003.74.6.873.
  22. Lao QY, Sun M, Yu L, Wang J. Lipofibromatosis: a clinicopathological analysis of eight cases. Zhonghua Bing Li Xue Za Zhi. 2018;47(3):186-191. doi: 10.3760/cma.j.issn.0529-5807.2018.03.008.
  23. Canbeyli ID, Akgun RC, Sahin O, Terzi A, Tuncay IC. Platelet-rich plasma decreases fibroblastic activity and woven bone formation with no significant immunohistochemical effect on long-bone healing: An experimental animal study with radiological outcomes. J Orthop Surg (Hong Kong). 2018;26(3):2309499018802491. doi: 10.1177/2309499018802491.
  24. Hernández-Rangel A, Silva-Bermudez P, España-Sánchez BL, Luna-Hernández E, Almaguer-Flores A, Ibarra C, et al. Fabrication and in vitro behavior of dual-function chitosan/silver nanocomposites for potential wound dressing applications. Mater Sci Eng C Mater Biol Appl. 2019;94:750-765. doi: 10.1016/j.msec.2018.10.012.
  25. Wang H, Zhao Z, Lin M, Groban L. Activation of GPR30 inhibits cardiac fibroblast proliferation. Mol. Cell Biochem. 2015;405(1-2):135-48. doi: 10.1007/s11010-015-2405-3.
  26. Binnebösel M, Klinge U, Rosch R, Junge K, Lynen-Jansen P, Schumpelick V. Morphology, quality, and composition in mature human peritoneal adhesions. Langenbecks Arch Surg. 2008;393(1):59-66. doi: 10.1007/s00423-007-0198-x.
  27. Kondratovich LM, Kozachenko AV, Kogan EA, Fayzullina NM, Adamyan LV. [Clinical and morphological features of the adhesive process in patients with uterine myoma]. Akusherstvo i Ginekologiya. 2014;8:71-75. [Article in Russian].
  28. Ayushinova NI, Lepekhova SA, Shurygina IA, Roy TA, Shurygin MG, Zaritskaya LV, Goldberg OA. A method for modeling the adhesions in the abdominal cavity. Patent RU 2467401 C1, d.d. 20.11.2012. Application N 2011131678/14, d.d. 27.07.2011. [In Russian].
  29. Shurygina IA, Ayushinova NI, Chepurnykh EE, Shurygin MG. [Method for the prevention of adhesions of the abdominal cavity]. Eksperimentalnaya i Klinicheskaya Gastroenterologiya. 2017;10(146):83-87. [Article in Russian].
  30. Ayushinova NI, Shurygina IA, Shurygin MG, Lepekhova SA, Balykina AV, Malgataeva ER, et al. [Experimental model for the development of methods for the prevention of adhesions in the abdominal cavity]. Sibirskiy Meditsinskiy Zhurnal (Irkutsk). 2012; 109(2): 51-53. [Article in Russian].
  31. Bancroft JD, Gamble M. Theory and practice of histological techniques. Elsevier Health Sciences, 2008.
  32. Shurygin MG, Shurygina IA, Dremina NN, Kanya OV. Endogenous progenitors as the source of cell material for ischemic damage repair in experimental myocardial infarction under conditions of changed concentration of vascular endothelial growth factor. Bull Exp Biol Med. 2015;158(4):528-31. doi: 10.1007/s10517-015-2801-4.
  33. Shurygina I.A., Shurygin M.G., Granina G.B., Zelenin N.V. Application of mitogen-activated protein kinase inhibitor SP 600125 for wound healing control. Journal of Regenerative Medicine & Tissue Engineering. 2013;2. doi: http://dx.doi.org/10.7243/2050-1218-2-9.
  34. Shurygin MG, Shurygina IA, Kanya OV, Dremina NN, Lushnikova EL, Nepomnyashchikh RD. Morphological evaluation of oxidative phosphorylation system in myocardial infarction under conditions of modified vascular endothelial growth factor concentration. Bull Exp Biol Med. 2015;159(3):402-5. doi: 10.1007/s10517-015-2974-x.
  35. Ayushinova NI, Shurygina IA, Grigoryev EG. [The scale for assessing the severity of the adhesions of the abdominal cavity]. Acta Biomedica Scientifica. 2017;6(118):96-99. doi: 10.12737 / article_5a0a891f132b26.07816727. [Article in Russian].
  36. Shurygina IA, Aushinova NI, Shurygin MG. Effect of p38 MAPK inhibition on apoptosis marker expression in the process of peritoneal adhesion formation. International Journal of Biomedicine. 2018; 8(4): 342-346. doi: 10.21103/Article8(4)_OA15.

Download Article
Received October 4, 2020.
Accepted November 17, 2020.
©2020 International Medical Research and Development Corporation.