The structure of Haplotypes and Diplotypes in the PNPLA3 gene in the Yakut Population

Khariton A. Kurtanov, Nadezhda I. Pavlova, Aleksandra T. Diakonova, Lyubovy A. Sydykova, Tuyara N. Aleksandrova, Yigulana P. Borisova, Vladimir V. Dodokhov

 
International Journal of Biomedicine. 2020;10(4):433-437.
DOI: 10.21103/Article10(4)_OA20
Originally published December 10, 2020

Abstract: 

Background: The first GWAS searching for such genetic factors identified the PNPLA3 gene as a major genetic determinant for the predisposition to nonalcoholic fatty liver disease in Hispanic, African American, and European American populations, according to liver fat contents, a finding that was subsequently confirmed by liver biopsy in Europeans and Asians. The aim of our research was to study the distribution of alleles, genotypes, haplotypes and diplotypes of polymorphic variants of the PNPLA3 gene (rs2294918 and rs738409) in Yakuts.
Methods and Results: The PNPLA3 SNPs (rs2294918 and rs738409) were analyzed by PCR-RFLP reaction. The PNPLA3 rs738409 SNP in the Yakut population is characterized by a high frequency of the risk G allele (72%). According to the PNPLA3 rs2294918 SNP, which suppresses the negative effect of rs738409, the protective PNPLA3 (rs2294918) A allele was found only in 10.7% of study subjects.
Analysis of the distribution of the frequency of genotypes in the studied sample of Yakuts showed the predominance of the carriage of the PNPLA3 rs738409 GG genotype (57.3%) and the PNPLA3 rs2294918 GG genotype (80.7%). The frequency of the PNPLA3 (rs2294918) AA and AG genotypes was 2.0% and 17.3%, respectively. The Yakuts often have two diplotypes [GG]-[GG] and [CG]-[GG]. Both diplotypes carry the PNPLA3 rs738409 G allele (45.3% and 28%) and do not carry the PNPLA3 rs2294918 A allele. The high frequency of the [GG]-[GG] and [CG]-[GG] diplotypes in Yakuts (45.3% and 25%, respectively), carrying mutant alleles G (rs738409) and not carrying the A allele (rs2294918), indicates that these diplotypes were probably adaptively favorable to the Yakuts.
Conclusion: The analysis of haplotypes and diplotypes based on the markers rs738409 and rs2294918 of the PNPLA3 gene may contribute to future new biomarkers for the diagnosis of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis, as well as provide fundamental knowledge on human adaptation to cold.

Keywords: 
haplotype • diplotype • Yakut • PNPLA3 • rs738409 • rs2294918
References: 
  1. Simcox J, Geoghegan G, Maschek JA, Bensard CL, Pasquali M, Miao R, Lee S, Jiang L, Huck I, Kershaw EE, Donato AJ, Apte U, Longo N, Rutter J, Schreiber R, Zechner R, Cox J, Villanueva CJ. Global Analysis of Plasma Lipids Identifies Liver-Derived Acylcarnitines as a Fuel Source for Brown Fat Thermogenesis. Cell Metab. 2017 Sep 5;26(3):509-522.e6. doi: 10.1016/j.cmet.2017.08.006. 
  2. Kumari M, Schoiswohl G, Chitraju C, Paar M, Cornaciu I, Rangrez AY, Wongsiriroj N, Nagy HM, Ivanova PT, Scott SA, Knittelfelder O, Rechberger GN, Birner-Gruenberger R, Eder S, Brown HA, Haemmerle G, Oberer M, Lass A, Kershaw EE, Zimmermann R, Zechner R. Adiponutrin functions as a nutritionally regulated lysophosphatidic acid acyltransferase. Cell Metab. 2012 May 2;15(5):691-702. doi: 10.1016/j.cmet.2012.04.008. 
  3. Pingitore P, Pirazzi C, Mancina RM, Motta BM, Indiveri C, Pujia A, Montalcini T, Hedfalk K, Romeo S. Recombinant PNPLA3 protein shows triglyceride hydrolase activity and its I148M mutation results in loss of function. Biochim Biophys Acta. 2014 Apr 4;1841(4):574-80. doi: 10.1016/j.bbalip.2013.12.006. 
  4. Basantani MK, Sitnick MT, Cai L, Brenner DS, Gardner NP, Li JZ, Schoiswohl G, Yang K, Kumari M, Gross RW, Zechner R, Kershaw EE. Pnpla3/Adiponutrin deficiency in mice does not contribute to fatty liver disease or metabolic syndrome. J Lipid Res. 2011 Feb;52(2):318-29. doi: 10.1194/jlr.M011205.
  5. Chen W, Chang B, Li L, Chan L. Patatin-like phospholipase domain-containing 3/adiponutrin deficiency in mice is not associated with fatty liver disease. Hepatology. 2010 Sep;52(3):1134-42. doi: 10.1002/hep.23812. Erratum in: Hepatology. 2010 Dec;52(6):2250. 
  6. Romeo S, Kozlitina J, Xing C, Pertsemlidis A, Cox D, Pennacchio LA, Boerwinkle E, Cohen JC, Hobbs HH. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2008 Dec;40(12):1461-5. doi: 10.1038/ng.257. 
  7. Xu R, Tao A, Zhang S, Deng Y, Chen G. Association between patatin-like phospholipase domain containing 3 gene (PNPLA3) polymorphisms and nonalcoholic fatty liver disease: a HuGE review and meta-analysis. Sci Rep. 2015 Mar 20;5:9284. doi: 10.1038/srep09284. 
  8. He S, McPhaul C, Li JZ, Garuti R, Kinch L, Grishin NV, Cohen JC, Hobbs HH. A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis. J Biol Chem. 2010 Feb 26;285(9):6706-15. doi: 10.1074/jbc.M109.064501. 
  9. Smagris E, BasuRay S, Li J, Huang Y, Lai KM, Gromada J, Cohen JC, Hobbs HH. Pnpla3I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis. Hepatology. 2015 Jan;61(1):108-18. doi: 10.1002/hep.27242.
  10. Donati B, Motta BM, Pingitore P, Meroni M, Pietrelli A, Alisi A, Petta S, Xing C, Dongiovanni P, del Menico B, Rametta R, Mancina RM, Badiali S, Fracanzani AL, Craxì A, Fargion S, Nobili V, Romeo S, Valenti L. The rs2294918 E434K variant modulates patatin-like phospholipase domain-containing 3 expression and liver damage. Hepatology. 2016 Mar;63(3):787-98. doi: 10.1002/hep.28370. 
  11. Bruschi FV, Claudel T, Tardelli M, Caligiuri A, Stulnig TM, Marra F, Trauner M. The PNPLA3 I148M variant modulates the fibrogenic phenotype of human hepatic stellate cells. Hepatology. 2017 Jun;65(6):1875-1890. doi: 10.1002/hep.29041. 
  12. Trépo E, Nahon P, Bontempi G, Valenti L, Falleti E, Nischalke HD, Hamza S, Corradini SG, Burza MA, Guyot E, Donati B, Spengler U, Hillon P, Toniutto P, Henrion J, Franchimont D, Devière J, Mathurin P, Moreno C, Romeo S, Deltenre P. Association between the PNPLA3 (rs738409 C>G) variant and hepatocellular carcinoma: Evidence from a meta-analysis of individual participant data. Hepatology. 2014 Jun;59(6):2170-7. doi: 10.1002/hep.26767.
  13. Hyysalo J, Männistö VT, Zhou Y, Arola J, Kärjä V, Leivonen M, Juuti A, Jaser N, Lallukka S, Käkelä P, Venesmaa S, Simonen M, Saltevo J, Moilanen L, Korpi-Hyövalti E, Keinänen-Kiukaanniemi S, Oksa H, Orho-Melander M, Valenti L, Fargion S, Pihlajamäki J, Peltonen M, Yki-Järvinen H. A population-based study on the prevalence of NASH using scores validated against liver histology. J Hepatol. 2014 Apr;60(4):839-46. doi: 10.1016/j.jhep.2013.12.009. 
  14. Valenti L, Rumi M, Galmozzi E, Aghemo A, Del Menico B, De Nicola S, Dongiovanni P, Maggioni M, Fracanzani AL, Rametta R, Colombo M, Fargion S. Patatin-like phospholipase domain-containing 3 I148M polymorphism, steatosis, and liver damage in chronic hepatitis C. Hepatology. 2011 Mar;53(3):791-9. doi: 10.1002/hep.24123.
  15. Kurtanov KA, Sydykova LA, Pavlova NI, Filippova NP, Dodokhov VV, Apsolikhova GA, Solov'eva NA, D'yakonova AT, Neustroeva LM, Varlamova MA, Borisova NV. [Polymorphism of the adiponutrin gene (PNPLA3) in the indigenous inhabitants of the Republic of Sakha (Yakutia) with type 2 diabetes mellitus]. Almanac of Clinical Medicine. 2018;46 (3):258-263. doi: 10.18786/2072-0505-2018-46-3-258-263. [Article in Russian].
  16. GSR and the 1000 Genomes Project [Internet]. Available from: https://www.internationalgenome.org/
  17. HAPLOVIEW v.4.2 [Internet]. Available from: https://www.broadinstitute.org/haploview/version-42-15-september-2009

Download Article
Received November 1, 2020.
Accepted December 5, 2020.
©2020 International Medical Research and Development Corporation.