Some Molecular Mechanisms of Cervical Ripening

Yu. V. Grigorieva, G. N. Suvorova, A. M. Chaulin, S. N. Yukhimets, S. N. Chemidronov, V. N. Vankov

 
International Journal of Biomedicine. 2020;10(4):324-329.
DOI: 10.21103/Article10(4)_RA3
Originally published December 10, 2020

Abstract: 

Cervical remodeling is an active dynamic process that begins long before the onset of labor. The optimal course of the cervical ripening/remodeling processes is a prerequisite for successful vaginal delivery. Cervical remodeling is a slow progressive process that begins early in mammalian pregnancies, and can be loosely divided into four overlapping phases termed softening, ripening, dilation/labor, and postpartum repair. This review discusses some aspects of structural changes in the cervix at different stages of cervical ripening. In particular, the role of cervical epithelia, immune-inflammatory factors/cells, and components of the cervical extracellular matrix in cervical ripening is considered. A better understanding of the molecular-biochemical and histophysiological processes occurring during cervical remodeling is critical for the development of novel approaches to treat cervical insufficiency, preterm labor, and postpartum cervical disorders associated with its integrity.

Keywords: 
cervical ripening • extracellular matrix • histophysiological processes
References: 
  1. Grigoryeva YuV, Suvorova GN, Yukhimets SN. Anatomical and histological aspects of the uterine structure in albino rat. Morphology. 2019;155(1):29-34. [Article in Russian].
  2. Shurygina OV, Ulanov AN, Kulakova OV, Grigorjeva YuV. Regenerative competence of smooth muscle tissue of the reproductive system organs and their implementation in various methods of damage. Practical Medicine. 2019;17(1): 95-97. [Article in Russian].
  3. Grigoryeva YuV, Suvorova GN, Yunusova YuR, et al. [Peculiarities of ultrastructural changes in the cervical medial tunic resulting from the widening of the cervical canal]. Morphology. 2019; 155 (2): 86-87. [Article in Russian].
  4. Grigoreva YV. [Dynamics of ultrastructural changes in the cervical tissues of rats in the early postpartum period]. Bulletin of Medical Institute “REAVIZ”: Rehabilitation, Physician and Health. 2016;3(23):34-38. [Article in Russian].
  5. Timmons B, Akins M, Mahendroo M. Cervical remodeling during pregnancy and parturition. Trends Endocrinol Metab. 2010;21(6):353-361. doi:10.1016/j.tem.2010.01.011
  6. Liggins GC. Ripening of the cervix. Semin Perinatol. 1978;2(3):261-271.
  7. Read CP, Word RA, Ruscheinsky MA, Timmons BC, Mahendroo MS. Cervical remodeling during pregnancy and parturition: molecular characterization of the softening phase in mice. Reproduction. 2007;134(2):327-340. doi:10.1530/REP-07-0032
  8. Word RA, Li XH, Hnat M, Carrick K. Dynamics of cervical remodeling during pregnancy and parturition: mechanisms and current concepts. Semin Reprod Med. 2007;25(1):69-79. doi:10.1055/s-2006-956777
  9. Grigoryeva YV, Suvorova GN, Iukhimets SN, et al. Tissue morphogenesis features of the laboratory rats cervix a day before and in labor. Genes and Cells. 2018;13(2):67-71. doi: 10.23868/201808022. [Article in Russian].
  10. Leppert PC, Yu SY. Apoptosis in the cervix of pregnant rats in association with cervical softening. Gynecol Obstet Invest. 1994;37(3):150-154. doi:10.1159/000292546
  11. Yellon SM. Contributions to the dynamics of cervix remodeling prior to term and preterm birth. Biol Reprod. 2017;96(1):13-23. doi:10.1095/biolreprod.116.142844
  12. Leppert PC. Anatomy and physiology of cervical ripening. Clin Obstet Gynecol. 1995;38(2):267-279. doi:10.1097/00003081-199506000-00009
  13. HARKNESS ML, HARKNESS RD. Changes in the physical properties of the uterine cervix of the rat during pregnancy. J Physiol. 1959;148(3):524-547. doi:10.1113/jphysiol.1959.sp006304
  14. Yoshida K, Jiang H, Kim M, et al. Quantitative evaluation of collagen crosslinks and corresponding tensile mechanical properties in mouse cervical tissue during normal pregnancy. PLoS One. 2014;9(11):e112391. Published 2014 Nov 14. doi:10.1371/journal.pone.0112391
  15. Akins ML, Luby-Phelps K, Bank RA, Mahendroo M. Cervical softening during pregnancy: regulated changes in collagen cross-linking and composition of matricellular proteins in the mouse. Biol Reprod. 2011;84(5):1053-1062. doi:10.1095/biolreprod.110.089599
  16. Mahendroo M. Cervical remodeling in term and preterm birth: insights from an animal model. Reproduction. 2012;143(4):429-438. doi:10.1530/REP-11-0466
  17. Lee HY, Zhao S, Fields PA, Sherwood OD. The extent to which relaxin promotes proliferation and inhibits apoptosis of cervical epithelial and stromal cells is greatest during late pregnancy in rats. Endocrinology. 2005;146(1):511-518. doi:10.1210/en.2004-0796
  18. Anderson J, Brown N, Mahendroo MS, Reese J. Utilization of different aquaporin water channels in the mouse cervix during pregnancy and parturition and in models of preterm and delayed cervical ripening. Endocrinology. 2006;147(1):130-140. doi:10.1210/en.2005-0896
  19. Timmons BC, Mitchell SM, Gilpin C, Mahendroo MS. Dynamic changes in the cervical epithelial tight junction complex and differentiation occur during cervical ripening and parturition. Endocrinology. 2007;148(3):1278-1287. doi:10.1210/en.2006-0851
  20. Anderson J, Brown N, Mahendroo MS, Reese J. Utilization of different aquaporin water channels in the mouse cervix during pregnancy and parturition and in models of preterm and delayed cervical ripening. Endocrinology. 2006;147(1):130-140. doi:10.1210/en.2005-0896
  21. Straach KJ, Shelton JM, Richardson JA, Hascall VC, Mahendroo MS. Regulation of hyaluronan expression during cervical ripening. Glycobiology. 2005;15(1):55-65. doi:10.1093/glycob/cwh137
  22. Timmons BC, Mahendroo M. Processes regulating cervical ripening differ from cervical dilation and postpartum repair: insights from gene expression studies. Reprod Sci. 2007;14(8 Suppl):53-62. doi:10.1177/1933719107309587
  23. Hillier K, Wallis RM. Collagen solubility and tensile properties of the rat uterine cervix in late pregnancy: effects of arachidonic acid and prostaglandin F 2 alpha. J Endocrinol. 1982;95(3):341-347. doi:10.1677/joe.0.0950341
  24. Granström L, Ekman G, Ulmsten U, Malmström A. Changes in the connective tissue of corpus and cervix uteri during ripening and labour in term pregnancy. Br J Obstet Gynaecol. 1989;96(10):1198-1202. doi:10.1111/j.1471-0528.1989.tb03196.x
  25. Uldbjerg N, Ekman G, Malmström A, Olsson K, Ulmsten U. Ripening of the human uterine cervix related to changes in collagen, glycosaminoglycans, and collagenolytic activity. Am J Obstet Gynecol. 1983;147(6):662-666. doi:10.1016/0002-9378(83)90446-5
  26. Buhimschi IA, Dussably L, Buhimschi CS, Ahmed A, Weiner CP. Physical and biomechanical characteristics of rat cervical ripening are not consistent with increased collagenase activity. Am J Obstet Gynecol. 2004;191(5):1695-1704. doi:10.1016/j.ajog.2004.03.080
  27. Straach KJ, Shelton JM, Richardson JA, Hascall VC, Mahendroo MS. Regulation of hyaluronan expression during cervical ripening. Glycobiology. 2005;15(1):55-65. doi:10.1093/glycob/cwh137
  28. Timmons BC, Mahendroo MS. Timing of neutrophil activation and expression of proinflammatory markers do not support a role for neutrophils in cervical ripening in the mouse. Biol Reprod. 2006;74(2):236-245. doi:10.1095/biolreprod.105.044891
  29. Osmers R, Rath W, Pflanz MA, Kuhn W, Stuhlsatz HW, Szeverényi M. Glycosaminoglycans in cervical connective tissue during pregnancy and parturition. Obstet Gynecol. 1993;81(1):88-92.
  30. Ruscheinsky M, De la Motte C, Mahendroo M. Hyaluronan and its binding proteins during cervical ripening and parturition: dynamic changes in size, distribution and temporal sequence. Matrix Biol. 2008;27(5):487-497. doi:10.1016/j.matbio.2008.01.010
  31. Almond A. Hyaluronan. Cell Mol Life Sci. 2007;64(13):1591-1596. doi:10.1007/s00018-007-7032-z
  32. Ameye L, Young MF. Mice deficient in small leucine-rich proteoglycans: novel in vivo models for osteoporosis, osteoarthritis, Ehlers-Danlos syndrome, muscular dystrophy, and corneal diseases. Glycobiology. 2002;12(9):107R-16R. doi:10.1093/glycob/cwf065
  33. Vink J, Mourad M. The pathophysiology of human premature cervical remodeling resulting in spontaneous preterm birth: Where are we now?. Semin Perinatol. 2017;41(7):427-437
  34. Dobyns AE, Goyal R, Carpenter LG, Freeman TC, Longo LD, Yellon SM. Macrophage gene expression associated with remodeling of the prepartum rat cervix: microarray and pathway analyses. PLoS One. 2015;10(3):e0119782. Published 2015 Mar 26. doi:10.1371/journal.pone.0119782
  35. Yellon SM, Ebner CA, Sugimoto Y. Parturition and recruitment of macrophages in cervix of mice lacking the prostaglandin F receptor. Biol Reprod. 2008;78(3):438-444. doi:10.1095/biolreprod.107.063404
  36.  Liggins, GC. Cervical ripening as an inflammatory reaction. In: Ellwood, D., Anderson, ABM., editors. The Cervix in Pregnancy and Labour, Clinical and Biochemical Investigation. Edinburgh: Churchill Livingston; 1981.
  37. Young A, Thomson AJ, Ledingham M, Jordan F, Greer IA, Norman JE. Immunolocalization of proinflammatory cytokines in myometrium, cervix, and fetal membranes during human parturition at term. Biol Reprod. 2002;66(2):445-449. doi:10.1095/biolreprod66.2.445
  38.  Osman I, Young A, Ledingham MA, Thomson AJ, Jordan F, Greer IA, Norman JE. Leukocyte density and pro-inflammatory cytokine expression in human fetal membranes, decidua, cervix and myometrium before and during labour at term. Mol Hum Reprod. 2003;9(1):41-45. doi:10.1093/molehr/gag001
  39. Gonzalez JM, Xu H, Chai J, Ofori E, Elovitz MA. Preterm and term cervical ripening in CD1 Mice (Mus musculus): similar or divergent molecular mechanisms?. Biol Reprod. 2009;81(6):1226-1232. doi:10.1095/biolreprod.108.075309
  40. Timmons BC, Fairhurst AM, Mahendroo MS. Temporal changes in myeloid cells in the cervix during pregnancy and parturition. J Immunol. 2009;182(5):2700-2707. doi:10.4049/jimmunol.0803138
  41. Mendelson CR. Minireview: fetal-maternal hormonal signaling in pregnancy and labor. Mol Endocrinol. 2009;23(7):947-954. doi:10.1210/me.2009-0016
  42. Rauk PN, Chiao JP. Interleukin-1 stimulates human uterine prostaglandin production through induction of cyclooxygenase-2 expression. Am J Reprod Immunol. 2000;43(3):152-159. doi:10.1111/j.8755-8920.2000.430304.x
  43. Shynlova O, Tsui P, Dorogin A, Lye SJ. Monocyte chemoattractant protein-1 (CCL-2) integrates mechanical and endocrine signals that mediate term and preterm labor. J Immunol. 2008;181(2):1470-1479. doi:10.4049/jimmunol.181.2.1470
  44. Sooranna SR, Lee Y, Kim LU, Mohan AR, Bennett PR, Johnson MR. Mechanical stretch activates type 2 cyclooxygenase via activator protein-1 transcription factor in human myometrial cells. Mol Hum Reprod. 2004;10(2):109-113. doi:10.1093/molehr/gah021
  45. Condon JC, Jeyasuria P, Faust JM, Mendelson CR. Surfactant protein secreted by the maturing mouse fetal lung acts as a hormone that signals the initiation of parturition. Proc Natl Acad Sci U S A. 2004;101(14):4978-4983. doi:10.1073/pnas.0401124101
  46. Shaw G, Renfree MB. Fetal control of parturition in marsupials. Reprod Fertil Dev. 2001;13(7-8):653-659. doi:10.1071/rd01095
  47. Challis JRG, Matthews SG, Gibb W, Lye SJ. Endocrine and paracrine regulation of birth at term and preterm. Endocr Rev. 2000;21(5):514-550. doi:10.1210/edrv.21.5.0407
  48.  Mitchell MD, MacDonald PC, Casey ML. Stimulation of prostaglandin E2 synthesis in human amnion cells maintained in monolayer culture by a substance(s) in amniotic fluid. Prostaglandins Leukot Med. 1984;15(3):399-407. doi:10.1016/0262-1746(84)90138-0
  49. Soloff MS, Cook DL Jr, Jeng YJ, Anderson GD. In situ analysis of interleukin-1-induced transcription of cox-2 and il-8 in cultured human myometrial cells. Endocrinology. 2004;145(3):1248-1254. doi:10.1210/en.2003-1310
  50. Fuchs AR, Fuchs F, Husslein P, Soloff MS. Oxytocin receptors in the human uterus during pregnancy and parturition. Am J Obstet Gynecol. 1984;150(6):734-741. doi:10.1016/0002-9378(84)90677-x
  51. Chow L, Lye SJ. Expression of the gap junction protein connexin-43 is increased in the human myometrium toward term and with the onset of labor. Am J Obstet Gynecol. 1994;170(3):788-795. doi:10.1016/s0002-9378(94)70284-5
  52. Challis JRG, Matthews SG, Gibb W, Lye SJ. Endocrine and paracrine regulation of birth at term and preterm. Endocr Rev. 2000;21(5):514-550. doi:10.1210/edrv.21.5.0407
  53. Hassan SS, Romero R, Haddad R, et al. The transcriptome of the uterine cervix before and after spontaneous term parturition. Am J Obstet Gynecol. 2006;195(3):778-786. doi:10.1016/j.ajog.2006.06.021
  54. Rinaldi SF, Rossi AG, Saunders PT, Norman JE. Immune cells and preterm labour: do invariant NKT cells hold the key?. Mol Hum Reprod. 2015;21(4):309-312. doi:10.1093/molehr/gav002
  55. Erlebacher A. Immunology of the maternal-fetal interface. Annu Rev Immunol. 2013;31:387-411. doi:10.1146/annurev-immunol-032712-100003
  56. Osman I, Young A, Ledingham MA, et al. Leukocyte density and pro-inflammatory cytokine expression in human fetal membranes, decidua, cervix and myometrium before and during labour at term. Mol Hum Reprod. 2003;9(1):41-45. doi:10.1093/molehr/gag001
  57. Gomez-Lopez N, Guilbert LJ, Olson DM. Invasion of the leukocytes into the fetal-maternal interface during pregnancy. J Leukoc Biol. 2010;88(4):625-633. doi:10.1189/jlb.1209796
  58. Hamilton S, Oomomian Y, Stephen G, et al. Macrophages infiltrate the human and rat decidua during term and preterm labor: evidence that decidual inflammation precedes labor. Biol Reprod. 2012;86(2):39. Published 2012 Feb 14. doi:10.1095/biolreprod.111.095505
  59. Kelly RW. Inflammatory mediators and cervical ripening. J Reprod Immunol. 2002;57(1-2):217-224. doi:10.1016/s0165-0378(02)00007-4
  60. Ledingham MA, Thomson AJ, Young A, Macara LM, Greer IA, Norman JE. Changes in the expression of nitric oxide synthase in the human uterine cervix during pregnancy and parturition. Mol Hum Reprod. 2000;6(11):1041-1048. doi:10.1093/molehr/6.11.1041
  61. Yellon SM. Immunobiology of Cervix Ripening. Front Immunol. 2020;10:3156. Published 2020 Jan 24. doi:10.3389/fimmu.2019.03156
  62. Midwood KS, Williams LV, Schwarzbauer JE. Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol. 2004;36(6):1031-1037. doi:10.1016/j.biocel.2003.12.003
  63. Kyriakides TR, Zhu YH, Smith LT, et al. Mice that lack thrombospondin 2 display connective tissue abnormalities that are associated with disordered collagen fibrillogenesis, an increased vascular density, and a bleeding diathesis. J Cell Biol. 1998;140(2):419-430. doi:10.1083/jcb.140.2.419
  64. Bradshaw AD, Sage EH. SPARC, a matricellular protein that functions in cellular differentiation and tissue response to injury. J Clin Invest. 2001;107(9):1049-1054. doi:10.1172/JCI12939
  65. Chiquet-Ehrismann R, Chiquet M. Tenascins: regulation and putative functions during pathological stress. J Pathol. 2003;200(4):488-499. doi:10.1002/path.1415
  66. Kokenyesi R, Armstrong LC, Agah A, Artal R, Bornstein P. Thrombospondin 2 deficiency in pregnant mice results in premature softening of the uterine cervix. Biol Reprod. 2004;70(2):385-390. doi:10.1095/biolreprod.102.014704
  67. Stanley RL, Ohashi T, Gordon J, Mowa CN. A proteomic profile of postpartum cervical repair in mice. J Mol Endocrinol. 2018;60(1):17-28. doi:10.1530/JME-17-0179
  68. Stanley R, Ohashi T, Mowa C. Postpartum cervical repair in mice: a morphological characterization and potential role for angiogenic factors. Cell Tissue Res. 2015;362(1):253-263. doi:10.1007/s00441-015-2184-x
  69. Bauer M, Mazza E, Jabareen M, et al. Assessment of the in vivo biomechanical properties of the human uterine cervix in pregnancy using the aspiration test: a feasibility study. Eur J Obstet Gynecol Reprod Biol. 2009;144 Suppl 1:S77-S81. doi:10.1016/j.ejogrb.2009.02.025

Download Article
Received July 29, 2020.
Accepted October 14, 2020.
©2020 International Medical Research and Development Corporation.