Effect of the p38 MAPK Inhibitor on the Expression of Metalloproteinases and Their Inhibitors during the Formation of Abdominal Adhesions

Irina A. Shurygina, Lyubov V. Rodionova, Natalia I. Ayushinova, Elena E. Chepurnykh, Irina S. Trukhan, Michael G. Shurygin

International Journal of Biomedicine. 2021;11(4):446-450.
DOI: 10.21103/Article11(4)_OA9
Originally published December 10, 2021


Background: The aim of this study was to assess the effect of blockade of the p38 mitogen-activated protein kinase (MAPK) on the expression of genes encoding metalloproteinases (MMPs) during the formation of adhesions in the abdominal cavity.
Methods and Results: The experiments were carried out on male Wistar rats (n=75). The studies were carried out in two groups: Group 1 (control, n=35) – modelling the adhesive process; Group 2 (experimental, n=35) – modelling the adhesive process with intraperitoneal administration of Seroguard®—a prolonged form of the p38 MAPK inhibitor. The expression of the MMP1a, MMP2, MMP7, MMP9, and TIMP genes was assessed using real-time PCR.
In the control group, overexpression of the MMP1a and MMP7 genes began from 6 hours after modeling the adhesive process, MMP9 – from Day 1, MMP2 – from Day 7 and persisted until the end of observation. With local blockade of p38 MAPK, the level of overexpression of genes encoding MMPs in the early stages was higher than in the control group (MMP1a – by Day 1; MMP7 – by 6 hours and Day 1, MMP9 – by 12 hours). From Day 3 to Day 14, the MMP1a and MMP7 expression in the experimental group was significantly lower than in the control group.
Conclusion: The performed study demonstrated the involvement of different types of MMPs—collagenases (MMP1a), gelatinases (MMP2 and 9), matrilysins (MMP7)—in the rearrangement of the extracellular matrix during the process of adhesion formation in the abdominal cavity.

adhesive process • MAPK • p38 • MMP • TIMP
  1. Cui N, Hu M, Khalil RA. Biochemical and biological attributes of matrix metalloproteinases. Prog Mol Biol Transl Sci. 2017;147:1-73. doi: 10.1016/bs.pmbts.2017.02.005
  2. Chen Q, Jin M, Yang F, Zhu J, Xiao Q, Zhang L. Matrix metalloproteinases: inflammatory regulators of cell behaviors in vascular formation and remodeling. Mediators Inflamm. 2013;2013:928315. doi: 10.1155/2013/928315
  3. Noel A, Gutierrez-Fernandez A, Sounni NE, Behrendt N, Maquoi E, Lund IK, et al. New and paradoxical roles of matrix metalloproteinases in the tumor microenvironment. Front Pharmacol. 2012;3:140. doi: 10.3389/fphar.2012.00140
  4. Khokha R, Murthy A, Weiss A. Metalloproteinases and their natural inhibitors in inflammation and immunity. Nat Rev Immunol. 2013;13(9):649-65. doi: 10.1038/nri3499
  5. Raeeszadeh-Sarmazdeh M, Do LD, Hritz BG. Metalloproteinases and their inhibitors: Potential for the development of new therapeutics. Cells. 2020;9(5):1313. doi: 10.3390/cells9051313
  6. Arpino V, Brock M, Gill SE. The role of TIMPs in regulation of extracellular matrix proteolysis. Matrix Biol. 2015;44-46:247-54. doi: 10.1016/j.matbio.2015.03.005
  7. Grunwald B, Schoeps B, Kruger A. Recognizing the molecular multifunctionality and interactome of TIMP-1. Trends Cell Biol. 2019;29(1):6-19. doi: 10.1016/j.tcb.2018.08.006
  8. Dufour A. Degradomics of matrix metalloproteinases in inflammatory diseases. Front Biosci. 2015;7:150-67. doi: 10.2741/S430
  9. Dufour A, Overall CM. Subtracting matrix out of the equation: New key roles of matrix metalloproteinases in innate immunity and disease. In: Sagi I, Gaffney JP (eds). Matrix metalloproteinase biology. John Wiley & Sons, Inc.: Hoboken, NJ, USA. 2015;48:131-52. doi: 10.1002/9781118772287.ch8
  10. Young D, Das N, Anowai A, Dufour A. Matrix metalloproteases as influencers of the cells' social media. Int J Mol Sci. 2019;20(16):3847. doi: 10.3390/ijms20163847
  11. Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214(2):199-210. doi: 10.1002/path.2277
  12. Yu SH, Liu LJ, Lv B, Che CL, Fan DP, Wang LF, Zhang YM. Inhibition of bleomycin-induced pulmonary fibrosis by bone marrow-derived mesenchymal stem cells might be mediated by decreasing MMP9, TIMP-1, INF- and TGF. Cell Biochem Funct. 2015;33(6):356-66. doi: 10.1002/cbf.3118
  13. Nareznoi D, Konikov-Rozenman J, Petukhov D, Breuer R, Wallach-Dayan SB. Matrix metalloproteinases retain soluble fasL-mediated resistance to cell death in fibrotic-lung myofibroblasts. Cells. 2020;9(2):411. doi: 10.3390/cells9020411
  14. Ouchi H, Fujita M, Ikegame S, Ye Q, Inoshima I, Harada E, et al. The role of collagenases in experimental pulmonary fibrosis. Pulm Pharmacol Ther. 2008;21(2):401-8. doi: 10.1016/j.pupt.2007.10.006
  15. Mahalanobish S, Saha S, Dutta S, Sil PC. Matrix metalloproteinase: An upcoming therapeutic approach for idiopathic pulmonary fibrosis. Pharm Res. 2020;152:104591. doi: 10.1016/j.phrs.2019.104591
  16. Yu GY, Kovkarova-Naumovski E, Jara P, Parwani A, Kass D, Ruiz V, et al. Matrix metalloproteinase-19 is a key regulator of lung fibrosis in mice and humans. Am J Respir Crit Care Med. 2012;186(8):752-62. doi: 10.1164/rccm.201202-0302OC
  17. Duarte S, Saber J, Fujii T, Coito AJ. Matrix metalloproteinases in liver injury, repair and fibrosis. Matrix Biol. 2015;44-46:147-56. doi: 10.1016/j.matbio.2015.01.004
  18. Balog S, Li Y, Ogawa T, Miki T, Saito T, French SW, et al. Development of capsular fibrosis beneath the liver surface in humans and mice. Hepatology. 2020;71(1):291-305. doi: 10.1002/hep.30809
  19. Wang Q, Liu X, Zhang J, Lu L, Feng M, Wang J. Dynamic features of liver fibrogenesis and fibrosis resolution in the absence of matrix metalloproteinase-9. Mol Med Rep. 2019;20(6):5239-48. doi: 10.3892/mmr.2019.10740
  20. Shurygin MG, Shurygina IA, Dremina NN, Kanya OV. [Matrix metalloprotease 9 and remodeling in myocardial infarction]. Byulleten' VSNTs SO RAMN. 2013;90(2-1):138-41. [Article in Russian].
  21. Shurygina IA, Kanya OV, Dremina NN, Shurygin MG. [Pathomorphological assessment method of myocardial infarction age]. Sovremennye Tehnologii v Medicine. 2017;9(2):126-9. doi: 10.17691/stm2017.9.2.15 [Article in Russian].
  22. Christodoulidis G, Tsilioni I, Spyridakis ME, Kiropoulos T, Oikonomidi S, Koukoulis G, Tepetes K. Matrix metaloproteinase-2 and -9 serum levels as potential markers of intraperitoneal adhesions. J Invest Surg. 2013;26(3):134-40. doi: 10.3109/08941939.2012.730599
  23. Cheong YC, Shelton JB, Laird SM, Li TC, Ledger WL, Cooke ID. Peritoneal fluid concentrations of matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1, and transforming growth factor-beta in women with pelvic adhesions. Fertil Steril. 2003;79(5):1168-75. doi: 10.1016/s0015-0282(03)00079-7
  24. Ayushinova NI, Shurygina IA, Shurygin MG, Lepekhova SA, Balykina AV, Malgataeva ER, et al. [An experimental model for the development of methods for the prevention of adhesions in the abdominal cavity]. Sibirskiy Meditsinskiy Zhurnal. 2012;109(2):51-3. [Article in Russian].
  25. Ayushinova NI, Lepekhova SA, Shurygina IA, Roy TA, Shurygin MG, Zaritskaya LV, et al. Method for modeling adhesions in the abdominal cavity: Patent N 2467401 of the Russian Federation. [In Russian].
  26. Shurygina IA, Ayushinova NI, Chepurnykh EE, Shurygin MG. [Method for the prevention of adhesions of the abdominal cavity]. Eksperimental'naya i Klinicheskaya Gastroenterologiya. 2017;146(10):83-7. [Article in Russian].
  27. Shurygin MG, Shurygina IA. Compounds, pharmaceutical compositions and a method for the prophylaxis and treatment of the adhesion process: Patent WO/2012/156938 WIPO.

Download Article
Received October 23, 2021.
Accepted November 5, 2021.
©2021 International Medical Research and Development Corporation.