Interaction of Long-Chain Alcohol with Dry Yeast, Cholesterol, and Sea Firefly Luciferase

Kibo Nagasaki, Shinya Nagasaki

 
International Journal of Biomedicine. 2021;11(4):460-466.
DOI: 10.21103/Article11(4)_OA12
Originally published December 10, 2021

Abstract: 

Background: A hand sanitizer containing alcohol, usually ethanol or isopropanol, is typically used for disinfection, but given that cholesterol is one of the main components of virus envelopes, long-chain alcohol may be more effective. To better understand the potential disinfection activity of long-chain alcohols, we studied their interactions with dry yeast, cholesterol, and sea firefly luciferase.
Methods and Results: We measured, at 30oC and 39oC, the minimum inhibition concentration (MIC) of dry yeast fermentation and the stability of cholesterol and sea firefly luciferase with alcohols, diols, cetyltrimethylammonium chloride, and stearyltrimethylammonium chloride. The MIC decreased with the chain length at C≤12 for dry yeast and cholesterol with alcohol at 30oC. At C13 and higher, the cut-off region was observed. At 39oC, the cut-off region shifted to C15 and higher. The reduction of MIC was measured with the diol or sea firefly luciferase at C≤14.
Conclusion: The presence of the cut-off region is suggested to be related to whether the alcohol is in the liquid state. For the liquid alcohol, the longer the chain length, the lower the MIC. This suggests a potential disinfection activity of long-chain alcohol.

Keywords: 
cut-off region • liquid alcohol • minimum inhibition concentration
References: 
  1. Government of Ontario. COVID-19: Stop the spread [Internet]. [Cited 2021 Oct 2]. Available from: https://www.ontario.ca/page/covid-19-stop-spread.
  2. Boyce JM. Alcohols as Surface Disinfectants in Healthcare Settings. Infect Control Hosp Epidemiol. 2018 Mar;39(3):323-328. doi: 10.1017/ice.2017.301. 
  3. Government of Canada. Coronavirus disease (COVID-19): Prevention and risks [Internet]. [Cited 2021 Oct 2]. Available from: https://www.canada.ca/en/public-health/services/diseases/2019-novel-coro....
  4. Centers for Disease Control and Prevention. Hand hygiene recommendations. Guidance for healthcare providers about hand hygiene and COVID-19 [Internet]. [Cited 2021 Oct 2]. Available from: https://www.cdc.gov/coronavirus/2019-ncov/hcp/hand-hygiene.html.
  5. Jing JLJ, Pei Yi T, Bose RJC, McCarthy JR, Tharmalingam N, Madheswaran T. Hand Sanitizers: A Review on Formulation Aspects, Adverse Effects, and Regulations. Int J Environ Res Public Health. 2020 May 11;17(9):3326. doi: 10.3390/ijerph17093326. 
  6. Kratzel A, Todt D, V'kovski P, Steiner S, Gultom M, Thao TTN, Ebert N, Holwerda M, Steinmann J, Niemeyer D, Dijkman R, Kampf G, Drosten C, Steinmann E, Thiel V, Pfaender S. Inactivation of Severe Acute Respiratory Syndrome Coronavirus 2 by WHO-Recommended Hand Rub Formulations and Alcohols. Emerg Infect Dis. 2020 Jul;26(7):1592-1595. doi: 10.3201/eid2607.200915. 
  7. Yip L, Bixler D, Brooks DE, Clarke KR, Datta SD, Dudley S Jr, Komatsu KK, Lind JN, Mayette A, Melgar M, Pindyck T, Schmit KM, Seifert SA, Shirazi FM, Smolinske SC, Warrick BJ, Chang A. Serious Adverse Health Events, Including Death, Associated with Ingesting Alcohol-Based Hand Sanitizers Containing Methanol - Arizona and New Mexico, May-June 2020. MMWR Morb Mortal Wkly Rep. 2020 Aug 14;69(32):1070-1073. doi: 10.15585/mmwr.mm6932e1. 
  8. Shalbafan M, Khademoreza N. What we can learn from COVID-19 outbreak in Iran about the importance of alcohol use education. Am J Drug Alcohol Abuse. 2020 May 3;46(3):385-386. doi: 10.1080/00952990.2020.1753759. 
  9. Kubo I, Muroi H, Kubo A. Structural functions of antimicrobial long-chain alcohols and phenols. Bioorg Med Chem. 1995 Jul;3(7):873-80. doi: 10.1016/0968-0896(95)00081-q. 
  10. Mukherjee K, Tribedi P, Mukhopadhyay B, Sil AK. Antibacterial activity of long-chain fatty alcohols against mycobacteria. FEMS Microbiol Lett. 2013 Jan;338(2):177-83. doi: 10.1111/1574-6968.12043. 
  11. Fletcher RD, Gilbertson JR, Albers AC, White JD. Inactivation of mycoplasmas by long-chain alcohols. Antimicrob Agents Chemother. 1981 May;19(5):917-21. doi: 10.1128/AAC.19.5.917.
  12. Ingram LO, Vreeland NS. Differential effects of ethanol and hexanol on the Escherichia coli cell envelope. J Bacteriol. 1980 Nov;144(2):481-8. doi: 10.1128/jb.144.2.481-488.1980.
  13. Gill CO, Ratledge C. Toxicity of n-alkanes, n-alk-1-enes, n-alkan-1-ols and n-alkyl-1-bromides towards yeasts. Microbiology. 1972;72(1):165-72. doi: 10.1099/00221287-72-1-165.
  14. Teh JS. Toxicity of short-chain fatty acids and alcohols towards Cladosporium resinae. Appl Microbiol. 1974 Nov;28(5):840-4. doi: 10.1128/am.28.5.840-844.1974. 
  15. Kato N, Shibasaki I. The antimicrobial characteristics of 1-alkanols. J Antibact Antifung Agents. 1980;8:325-31.
  16. Pringle MJ, Brown KB, Miller KW. Can the lipid theories of anesthesia account for the cutoff in anesthetic potency in homologous series of alcohols? Mol Pharmacol. 1981 Jan;19(1):49-55.
  17. Zapata-Morin PA, Sierra-Valdez FJ, Ruiz-Suárez JC. The cut-off effect of n-alcohols in lipid rafts: A lipid-dependent phenomenon☆. J Mol Graph Model. 2020 Dec;101:107732. doi: 10.1016/j.jmgm.2020.107732. 
  18. Brosnan RJ, Pham TL. Anesthetic-sensitive ion channel modulation is associated with a molar water solubility cut-off. BMC Pharmacol Toxicol. 2018 Sep 14;19(1):57. doi: 10.1186/s40360-018-0244-z.
  19. Kubo I, Fujita T, Kubo A, Fujita Ki. Modes of antifungal action of alkanols against Saccharomyces cerevisiae. Bioorg Med Chem. 2003 Mar 20;11(6):1117-22. doi: 10.1016/s0968-0896(02)00453-4. 
  20. Bordeleau LJ, Gailis L, Fournier D, Morissette M, Di Paolo T, Daleau P. Cut-off phenomenon in the protective effect of alcohols against lysophosphatidylcholine-induced calcium overload. Pflugers Arch. 2005 Aug;450(5):292-7. doi: 10.1007/s00424-005-1425-3. 
  21. Williams AA, Sugandhi EW, Macri RV, Falkinham JO 3rd, Gandour RD. Antimicrobial activity of long-chain, water-soluble, dendritic tricarboxylato amphiphiles. J Antimicrob Chemother. 2007 Mar;59(3):451-8. doi: 10.1093/jac/dkl503.
  22. Kamaya H, Matubayasi N, Ueda I. Biphasic effect of long-chain n-alkanols on the main-phase transition of phospholipid vesicle membranes. J Phys Chem. 1984;88(4):797-800. doi: 10.1021/j150648a036.
  23. Veenstra G, Webb C, Sanderson H, Belanger SE, Fisk P, Nielsen A, Kasai Y, Willing A, Dyer S, Penney D, Certa H, Stanton K, Sedlak R. Human health risk assessment of long chain alcohols. Ecotoxicol Environ Saf. 2009 May;72(4):1016-30. doi: 10.1016/j.ecoenv.2008.07.012. 
  24. Kikuchi K. [Various topics concerning infectious diseases (9) Microbiological experiments in the home (2)]. 感染症四方山話(9): 家庭でできる微生物実験その2. The Chem Times. 2014;233:18-23. Japanese. Available from: https://www.kanto.co.jp/dcms_media/other/series_pdf09.pdf.
  25. Ishijima S, Abe S. [Safe and easy manual for measuring antifungal activity]. 安全で簡易な抗真菌活性の測定マニュアル. Med Mycol Research. 2012;3(1):7-16. Japanese. Available from: https://appsv.main.teikyo-u.ac.jp/tosho/ishinkin3-1-04.pdf.
  26. Miriyama H. [Attenuation of rice blast fungus and development of biological control materials using dry yeast and mycovirus]. パン酵母を利用したイネいもち病菌弱毒化マイコウイルスの生物防除資材としての実用化研究. Presentation material at NEDO-Tokyo University of Agriculture and Technology Symposium [Internet]. [cited 2021 Oct 2]. Available from: https://www.nedo.go.jp/content/100080343.pdf. Japanese.
  27. Toya Y, Ito H. [Evaluation of the educational effect of the experimental demonstration for bioluminescence by using freeze-dried Vargula (formerly Cypridina) hilgendorfii bodies as a teaching material]. 凍結乾燥ウミホタル生物発光教材を使用した実践とその教育効果の評価. Research Report of Aichi University of Education. 2008;57:65-72. Japanese: Available from: https://aue.repo.nii.ac.jp/?action=repository_action_common_download&ite....
  28. Nagasaki K. Underwater communication with blue light. Can Sci Fair J. [cited 2021 Oct 2]; 2020;3(2). Available from https://csfjournal.com/volume-3-issue-2/2020/10/26/underwater-communicat....
  29. Fesel PH, Zuccaro A. β-glucan: Crucial component of the fungal cell wall and elusive MAMP in plants. Fungal Genet Biol. 2016 May;90:53-60. doi: 10.1016/j.fgb.2015.12.004.
  30. Oba Y, Ojika M, Inouye S. Firefly luciferase is a bifunctional enzyme: ATP-dependent monooxygenase and a long chain fatty acyl-CoA synthetase. FEBS Lett. 2003 Apr 10;540(1-3):251-4. doi: 10.1016/s0014-5793(03)00272-2. 
  31. Suzuki H, Kawarabayasi Y, Kondo J, Abe T, Kimura S, Hashimoto T, et al. Structure and regulation of rat long-chain acyl-CoA synthetase. J Biol Chem. 1990;265(15):8681-5. doi: 10.1016/S0021-9258(19)38942-2.
  32. Bell GH. Solubility of normal aliphatic acids, alcohols and alkanes in water. Chem Phys Lipids. 1973;10(1):1-10. doi: 10.1016/0009-3084(73)90036-4.
  33. Lin Q, Lim JYC, Xue K, Yew PYM, Owh C, Chee PL, et al. Sanitizing agents for virus inactivation and disinfection. View [Internet] 2020 May [cited 2021 Oct 2]. Available from: https://onlinelibrary.wiley.com/doi/10.1002/viw2.16.
  34. Food Analysis Technology Center [Internet]. [Technology for using alcohol to control microorganisms in food factories]. 食品工場の微生物制御へのアルコールの利用技術 [cited 2021 Oct 2]. Japanese. Available from: http://www.mac.or.jp/mail/120601/04.shtml.
  35. Shimmei A. Influence of ethanol concentration on bactericidal and virucidal activities [Internet]. Ph.D. Thesis: Tokyo Healthcare University; 2019 [cited 2021 Oct 3]. Japanese. Available from http://www.thcu.ac.jp/uploads/imgs/20190605090207.pdf.

Download Article
Received October 7, 2021.
Accepted October 26, 2021.
©2021 International Medical Research and Development Corporation.