Mechanisms for Cardiac Troponin Increase in Arterial Hypertension

Aleksey M. Chaulin

 
International Journal of Biomedicine. 2021;11(4):397-402.
DOI: 10.21103/Article11(4)_RA2
Originally published December 10, 2021

Abstract: 

Despite the fact that cardiac troponins (cTnI and cTnT) are cardiospecific, they can be elevated in many systemic and non-cardiac physiological and pathological conditions. The diagnostic value of cTnI and cTnT significantly depends on the method of their determination. Thus, previously used low- and moderate-sensitivity immunoassays detected only serious myocardial damage and did not determine troponins in patients suffering from certain chronic pathologies. High-sensitivity troponin assays can detect minor damage to cardiac muscle cells in many pathological conditions, and troponin levels have a high predictive value. Among the early pathological conditions requiring the attention of clinicians is arterial hypertension (AH), which is also accompanied by an increase in the levels of hsTn in serum and urine. Currently, mechanisms responsible for increased levels of cardiac troponins in the blood serum and urine in hypertension are not well covered in the scientific literature. This article discusses in detail the presumptive mechanisms that cause increased levels of cTnI and cTnT in AH.

Keywords: 
cardiac troponins • cardiovascular disease • arterial hypertension • glomerular filtration rate
References: 
  1. Gomes AV, Potter JD, Szczesna-Cordary D. The role of troponins in muscle contraction. IUBMB Life. 2002 Dec;54(6):323-33. doi: 10.1080/15216540216037. PMID: 12665242.
  2. Gordon AM, Homsher E, Regnier M. Regulation of contraction in striated muscle. Physiol Rev. 2000 Apr;80(2):853-924. doi: 10.1152/physrev.2000.80.2.853. 
  3. Clippinger SR, Cloonan PE, Wang W, Greenberg L, Stump WT, Angsutararux P, Nerbonne JM, Greenberg MJ. Mechanical dysfunction of the sarcomere induced by a pathogenic mutation in troponin T drives cellular adaptation. J Gen Physiol. 2021 May 3;153(5):e202012787. doi: 10.1085/jgp.202012787. 
  4. Na I, Kong MJ, Straight S, Pinto JR, Uversky VN. Troponins, intrinsic disorder, and cardiomyopathy. Biol Chem. 2016;397(8):731-751. doi:10.1515/hsz-2015-0303.
  5. Duplyakov DV, Chaulin AM. Mutations of heart troponines, associated with cardiomyopathies. Kardiologiya: Novosti, Mneniya, Obuchenie [Cardiology: News, Opinions, Training]. 2019;7(3):8–17. doi: 10.24411/2309-1908-2019-13001. [Article in Russian].
  6. Chaulin AM, Abashina OE, Duplyakov DV. High-sensitivity cardiac troponins: detection and central analytical characteristics. Cardiovascular Therapy and Prevention. 2021;20(2):2590. [Article in Russian]. doi: 10.15829/1728-8800-2021-2590
  7. Chaulin AM, Grigorieva YuV, Pavlova TV, Duplyakov DV. [Diagnostic significance of complete blood count in cardiovascular patients; Samara State Medical University]. Russian Journal of Cardiology. 2020;25(12):3923. doi: 10.15829/1560-4071-2020-3923 [Article in Russian].
  8. Chaulin AM, Duplyakov DV. Increased cardiac troponins, not associated with acute coronary syndrome. Part 1. Kardiologiya: Novosti, Mneniya, Obuchenie [Cardiology: News, Opinions, Training]. 2019;7(2):13–23. doi: 10.24411/2309-1908-2019-12002. [Article in Russian].
  9. Chaulin AM, Karslyan LS, Bazyuk EV, Nurbaltaeva DA, Duplyakov DV. [Clinical and Diagnostic Value of Cardiac Markers in Human Biological Fluids]. Kardiologiia. 2019.Dec11;59(11):66-75. doi: 10.18087/cardio.2019.11.n414. [Article in Russian].
  10. Chaulin AM, Karslyan LS, Grigorieva EV, Nurbaltaeva DA, Duplyakov DV. Metabolism of cardiac troponins (Literature review). Complex Issues of Cardiovascular Diseases. 2019;8(4):103-115. doi: 10.17802/2306-1278-2019-8-4-103-115. [Article in Russian].
  11. Cummins B, Auckland ML, Cummins P. Cardiac-specific troponin-I radioimmunoassay in the diagnosis of acute myocardial infarction. Am Heart J. 1987 Jun;113(6):1333-44. doi: 10.1016/0002-8703(87)90645-4. 
  12. Katus HA, Looser S, Hallermayer K, Remppis A, Scheffold T, Borgya A, Essig U, Geuss U. Development and in vitro characterization of a new immunoassay of cardiac troponin T. Clin Chem. 1992 Mar;38(3):386-93. 
  13. Collinson PO, Boa FG, Gaze DC. Measurement of cardiac troponins. Ann Clin Biochem. 2001 Sep;38(Pt 5):423-49. doi: 10.1177/000456320103800501. PMID: 11587122.
  14. Hossein-Nia M, Nisbet J, Merton GK, Holt DW. Spurious rises of cardiac troponin T. Lancet. 1995;346(8989):1558. doi:10.1016/s0140-6736(95)92087-0.
  15. Löfberg M, Tähtelä R, Härkönen M, Somer H. Cardiac troponins in severe rhabdomyolysis. Clin Chem. 1996 Jul;42(7):1120-1. PMID: 8674206.
  16. Benoist JF, Cosson C, Mimoz O, Edouard A. Serum cardiac troponin I, creatine kinase (CK), and CK-MB in early posttraumatic rhabdomyolysis. Clin Chem. 1997 Feb;43(2):416-7. PMID: 9023157.
  17. Mueller-Hennessen M, Giannitsis E. Do we need to consider age and gender for accurate diagnosis of myocardial infarction? Diagnosis (Berl). 2016 Dec 1;3(4):175-181. doi: 10.1515/dx-2016-0023.
  18. Yang S, Huai W, Qiao R, Cui L, Liu G, Wu J, Li A, Zhang J. Age and Gender Tailored Cutoff Value of hs-cTnT Contributes to Rapidly Diagnose Acute Myocardial Infarction in Chest Pain Patients. Clin Lab. 2016 Aug 1;62(8):1451-1459. doi: 10.7754/Clin.Lab.2016.151201. 
  19. Chaulin AM, Duplyakov DV. [High-sensitivity cardiac troponins: circadian rhythms]. Cardiovascular Therapy and Prevention. 2021;20(1):82-88. doi:10.15829/1728-8800-2021-2639. [Article in Russian].
  20. Chaulin AM, Duplyakova PD, Duplyakov DV. [Circadian rhythms of cardiac troponins: mechanisms and clinical significance]. Russian Journal of Cardiology. 2020;25:4061.  doi: 10.15829/1560-4071-2020-4061.[Article in Russian].
  21. Chaulin AM, Duplyakov DV. [Increased natriuretic peptides, not associated with heart failure]. Russian Journal of Cardiology. 2020;:4140. doi: 10.15829/1560-4071-2020-4140. [Article in Russian].
  22. Chaulin AM, Duplyakov DV. Comorbidity in chronic obstructive pulmonary disease and cardiovascular disease. Cardiovascular Therapy and Prevention. 2021;20(3):2539. doi; 10.15829/1728-8800-2021-2539. [Article in Russian].
  23. Chaulin AM, Svechkov NA, Volkova SL, Grigoreva YuV. Diagnostic value of cardiac troponins in elderly patients without myocardial infarction. Modern problems of science and education. 2020;6. doi: 10.17513/spno.30302. [Article in Russian].
  24. Chaulin AM, Duplyakov DV. Environmental factors and cardiovascular diseases. Hygiene and Sanitation. 2021;100(3):223-228. doi: 10.47470/0016-9900-2021-100-3-223-228. [Article in Russian].
  25. Chaulin AM, Duplyakov VD. On the potential effect of circadian rhythms of cardiac troponins on the diagnosis of acute myocardial infarction. Signa Vitae. 2021.doi:10.22514/sv.2021.050.
  26. Pervan P, Svaguša T, Prkačin I, Savuk A, Bakos M, Perkov S. Urine high sensitive Troponin I measuring in patients with hypertension. Signa Vitae. 2017;13:62–64. doi: 10.22514/SV133.062017.13.
  27. Chen JY, Lee SY, Li YH, Lin CY, Shieh MD, Ciou DS. Urine High-Sensitivity Troponin I Predict Incident Cardiovascular Events in Patients with Diabetes Mellitus. J Clin Med. 2020 Dec 2;9(12):3917. doi: 10.3390/jcm9123917. 
  28. Potkonjak AM, Sabolović Rudman S, Nikolac Gabaj N, Kuna K, Košec V, Stanec Z, Zovak M, Tučkar N, Djaković I, Prkačin I, Svaguša T, Bakoš M. Urinary troponin concentration as a marker of cardiac damage in pregnancies complicated with preeclampsia. Med Hypotheses. 2020 Nov;144:110252. doi: 10.1016/j.mehy.2020.110252.
  29. Chaulin AM, Duplyakova PD, Bikbaeva GR, et al. [Concentration of high-sensitivity cardiac troponin I in the oral fluid in patients with acute myocardial infarction: a pilot study]. Russian Journal of Cardiology. 2020;25(12):3814. doi: 10.15829/1560-4071-2020-3814. [Article in Russian].
  30. Mirzaii-Dizgah I, Riahi E. Salivary high-sensitivity cardiac troponin T levels in patients with acute myocardial infarction. Oral Diseases. 2013;19(2):180-4.  doi: 10.1111/j.1601-0825.2012.01968.x.
  31. Chaulin A. Cardiac Troponins: Contemporary Biological Data and New Methods of Determination. Vasc Health Risk Manag. 2021;17:299-316
    doi: 10.2147/VHRM.S300002.
  32. Piccioni A, Brigida M, Loria V, Zanza C, Longhitano Y, Zaccaria R, Racco S, Gasbarrini A, Ojetti V, Franceschi F, Candelli M. Role of troponin in COVID-19 pandemic: a review of literature. Eur Rev Med Pharmacol Sci. 2020 Oct;24(19):10293-10300. doi: 10.26355/eurrev_202010_23254. 
  33. Kruska M, El-Battrawy I, Behnes M, Borggrefe M, Akin I. Biomarkers in Cardiomyopathies and Prediction of Sudden Cardiac Death. Curr Pharm Biotechnol. 2017;18(6):472-481. doi:10.2174/1389201018666170623125842
  34. Chaulin AM, Duplyakov DV. MicroRNAs in Atrial Fibrillation: Pathophysiological Aspects and Potential Biomarkers. International Journal of Biomedicine. 2020;10(3):198-205. doi: 10.21103/Article10(3)_RA3.
  35. Bessière F, Khenifer S, Dubourg J, Durieu I, Lega JC. Prognostic value of troponins in sepsis: a meta-analysis. Intensive Care Med. 2013;39(7):1181-1189. doi:10.1007/s00134-013-2902-3.
  36. Aakre KM, Omland T. Physical activity, exercise and cardiac troponins: Clinical implications. Prog Cardiovasc Dis. 2019;62(2):108-115. doi:10.1016/j.pcad.2019.02.005.
  37. Han X, Zhang S, Chen Z, Adhikari BK, Zhang Y, Zhang J, Sun J, Wang Y. Cardiac biomarkers of heart failure in chronic kidney disease. Clin Chim Acta. 2020 Nov;510:298-310. doi: 10.1016/j.cca.2020.07.040. 
  38. Chaulin AM, Duplyakov DV. Arrhythmogenic effects of doxorubicin. Complex Issues of Cardiovascular Diseases. 2020;9(3):69-80. doi: 10.17802/2306-1278-2020-9-3-69-80.
  39. Chaulin AM, Abashina OE, Duplyakov DV. Pathophysiological mechanisms of cardiotoxicity in chemotherapeutic agents. Russian Open Medical Journal 2020; 9: e0305. doi: 10.15275/rusomj.2020.0305.
  40. Kandasamy AD, Chow AK, Ali MA, Schulz R. Matrix metalloproteinase-2 and myocardial oxidative stress injury: beyond the matrix. Cardiovasc Res. 2010 Feb 1;85(3):413-23. doi: 10.1093/cvr/cvp268.
  41. Hughes BG, Schulz R. Targeting MMP-2 to treat ischemic heart injury. Basic Res Cardiol. 2014;109(4):424. doi:10.1007/s00395-014-0424-y
  42. Wang W, Schulze CJ, Suarez-Pinzon WL, Dyck JR, Sawicki G, Schulz R. Intracellular action of matrix metalloproteinase-2 accounts for acute myocardial ischemia and reperfusion injury. Circulation. 2002 Sep 17;106(12):1543-9. doi: 10.1161/01.cir.0000028818.33488.7b.
  43. Feng J, Schaus BJ, Fallavollita JA, Lee TC, Canty JM Jr. Preload induces troponin I degradation independently of myocardial ischemia. Circulation. 2001 Apr 24;103(16):2035-7. doi: 10.1161/01.cir.103.16.2035.
  44. Maekawa A, Lee JK, Nagaya T, Kamiya K, Yasui K, Horiba M, Miwa K, Uzzaman M, Maki M, Ueda Y, Kodama I. Overexpression of calpastatin by gene transfer prevents troponin I degradation and ameliorates contractile dysfunction in rat hearts subjected to ischemia/reperfusion. J Mol Cell Cardiol. 2003 Oct;35(10):1277-84. doi: 10.1016/s0022-2828(03)00238-4. 
  45. Richardson AJ, Leckie T, Watkins ER, Fitzpatrick D, Galloway R, Grimaldi R, Baker P. Post marathon cardiac troponin T is associated with relative exercise intensity. J Sci Med Sport. 2018 Sep;21(9):880-884. doi: 10.1016/j.jsams.2018.02.005.
  46. Martínez-Navarro I, Sánchez-Gómez J, Sanmiguel D, Collado E, Hernando B, Panizo N, Hernando C. Immediate and 24-h post-marathon cardiac troponin T is associated with relative exercise intensity. Eur J Appl Physiol. 2020 Aug;120(8):1723-1731. doi: 10.1007/s00421-020-04403-8.
  47. Lazzarino AI, Hamer M, Gaze D, Collinson P, Steptoe A. The association between cortisol response to mental stress and high-sensitivity cardiac troponin T plasma concentration in healthy adults. J Am Coll Cardiol. 2013 Oct 29;62(18):1694-1701. doi: 10.1016/j.jacc.2013.05.070. 
  48. Afonso L, Bandaru H, Rathod A, Badheka A, Ali Kizilbash M, Zmily H, et al. Prevalence, determinants, and clinical significance of cardiac troponin-I elevation in individuals admitted for a hypertensive emergency. J Clin Hypertens (Greenwich). 2011 Aug;13(8):551-6. doi: 10.1111/j.1751-7176.2011.00476.x.
  49. Papadopoulos DP, Sanidas EA, Viniou NA, Gennimata V, Chantziara V, Barbetseas I, Makris TK. Cardiovascular hypertensive emergencies. Curr Hypertens Rep. 2015 Feb;17(2):5. doi: 10.1007/s11906-014-0515-z.
  50. Pattanshetty DJ, Bhat PK, Aneja A, Pillai DP. Elevated troponin predicts long-term adverse cardiovascular outcomes in hypertensive crisis: a retrospective study. J Hypertens. 2012 Dec;30(12):2410-5. doi: 10.1097/HJH.0b013e3283599b4f.
  51. Hessel MH, Atsma DE, van der Valk EJ, Bax WH, Schalij MJ, van der Laarse A. Release of cardiac troponin I from viable cardiomyocytes is mediated by integrin stimulation. Pflugers Arch. 2008 Mar;455(6):979-86. doi: 10.1007/s00424-007-0354-8.
  52. Cheng W, Li B, Kajstura J, Li P, Wolin MS, Sonnenblick EH, Hintze TH, et al. Stretch-induced programmed myocyte cell death. J Clin Invest. 1995 Nov;96(5):2247-59. doi: 10.1172/JCI118280
  53. Singh K, Communal C, Sawyer DB, Colucci WS. Adrenergic regulation of myocardial apoptosis. Cardiovasc Res. 2000 Feb;45(3):713-9. doi: 10.1016/s0008-6363(99)00370-3.
  54. Singh K, Xiao L, Remondino A, Sawyer DB, Colucci WS. Adrenergic regulation of cardiac myocyte apoptosis. J Cell Physiol. 2001 Dec;189(3):257-65. doi: 10.1002/jcp.10024.
  55. Dalal S, Connelly B, Singh M, Singh K. NF2 signaling pathway plays a pro-apoptotic role in β-adrenergic receptor stimulated cardiac myocyte apoptosis. PLoS One. 2018 Apr 30;13(4):e0196626. doi: 10.1371/journal.pone.0196626.
  56. Weil BR, Suzuki G, Young RF, Iyer V, Canty JM Jr. Troponin Release and Reversible Left Ventricular Dysfunction After Transient Pressure Overload. J Am Coll Cardiol. 2018 Jun 26;71(25):2906-2916. doi: 10.1016/j.jacc.2018.04.029.
  57. Stacy SR, Suarez-Cuervo C, Berger Z, et al. Role of troponin in patients with chronic kidney disease and suspected acute coronary syndrome: a systematic review. Ann Intern Med. 2014;161(7):502-512. doi:10.7326/M14-0746
  58. Dubin RF, Li Y, He J, Jaar BG, Kallem R, Lash JP, Makos G, et al; CRIC Study Investigators. Predictors of high sensitivity cardiac troponin T in chronic kidney disease patients: a cross-sectional study in the chronic renal insufficiency cohort (CRIC). BMC Nephrol. 2013 Oct 22;14:229. doi: 10.1186/1471-2369-14-229.
  59. Ziebig R, Lun A, Hocher B, Priem F, Altermann C, Asmus G, Kern H, et al. Renal elimination of troponin T and troponin I. Clin Chem. 2003 Jul;49(7):1191-3. doi: 10.1373/49.7.1191.
  60. Chaulin AM, Duplyakova PD, Bikbaeva GR, Tukhbatova AA, Grigorieva EV, Duplyakov DV. [Concentration of high-sensitivity cardiac troponin I in the oral fluid in patients with acute myocardial infarction: a pilot study]. Russian Journal of Cardiology. 2020;25(12):3814. doi: 10.15829/1560-4071-2020-3814. [Article in Russian].
  61. Katrukha IA, Kogan AE, Vylegzhanina AV, Serebryakova MV, Koshkina EV, Bereznikova AV, Katrukha AG. Thrombin-Mediated Degradation of Human Cardiac Troponin T. Clin Chem. 2017 Jun;63(6):1094-1100. doi: 10.1373/clinchem.2016.266635.
  62. Chaulin AM. Phosphorylation and Fragmentation of the Cardiac Troponin T: Mechanisms, Role in Pathophysiology and Laboratory Diagnosis. International Journal of Biomedicine. 2021;11(3):250-259.DOI: 10.21103/Article11(3)_RA2
  63. Chaulin AM. Cardiac Troponins Metabolism: From Biochemical Mechanisms to Clinical Practice (Literature Review). Int J Mol Sci. 2021 Oct 10;22(20):10928. doi: 10.3390/ijms222010928. 
  64. Derhaschnig U, Testori C, Riedmueller E, Aschauer S, Wolzt M, Jilma B. Hypertensive emergencies are associated with elevated markers of inflammation, coagulation, platelet activation and fibrinolysis. J Hum Hypertens. 2013 Jun;27(6):368-73. doi: 10.1038/jhh.2012.53.

Download Article
Received July 4, 2021.
Accepted August 28, 2021.
©2021 International Medical Research and Development Corporation.