Neuropeptide Y and Asthma Clinical Course

Yanina S. Shkatova, Andrey V. Budnevsky, Evgeniy S. Ovsyannikov, Galina G. Prozorova, Anna P. Volynkina, Irina A. Olysheva

International Journal of Biomedicine. 2021;11(4):410-413.
DOI: 10.21103/Article11(4)_OA2
Originally published December 10, 2021


Background: The spectrum of clinical manifestations and pathogenetic mechanisms of bronchial asthma (BA) is very wide. Given the complex pathogenesis and syndromic nature of BA, it is not surprising that there is no single universal biomarker. The objective of this study was to evaluate levels of neuropeptide Y (NPY) and its association with levels of leptin, adiponectin, oxidative damage, antioxidant status, spirometry parameters, and asthma control in BA patients.
Methods and Results: Overall, 140 patients [35(25%) men and 105(75%) women; mean age of 57.0±9.34 years] with moderate asthma participated in the study. According to body mass index, all patients were divided into three groups. The asthma diagnosis was based on the integral assessment of symptoms, medical history, health status, and spirometry values according to the Global Strategy for Asthma Management and Prevention. (GINA, 2017 REPORT). The Asthma Control Test (АСТ) was used to assess asthma control.  NPY was measured in blood serum in EIA.
The NPY level was significantly higher in overweight patients and patients with obesity than in patients with normal body weight.  The NPY level significantly correlated with leptin (r=0.44; P<0.05), adiponectin (r=-0.24; P<0.05), ImanOx (r=-0.40; P<0.05), PerOx (r=0.58; P<0.05), ACT (r=-0.41; P<0.05), VC (r=-0.31; P<0.05), FEV1 (r=-0.41; P<0.05), FEF25% (r=-0.26; P<0.05), FVC (r=-0.23; P<0.05), Tiffno index (r=-0.36; P<0.05), FEF50% (r=-0.22; P<0.05), and PEF (r=-0.23; P<0.05)
Conclusion: The severity of the asthma clinical course is associated with different factors, including oxidative stress, levels of leptin, adiponectin and NPY. NPY seems to be associated with worse asthma control and higher levels of leptin and oxidative damage.

asthma control • oxidative stress • neuropeptide Y• adipokines
  1. Ermolova AV, Budnevsky AV, Yu ME, Ovsyannikov ES, Drobysheva ES. [BRONCHIAL ASTHMA AND METABOLIC SYNDROME]. Klin Med (Mosk). 2015;93(6):44-9. [Article in Russian].
  2. Kozhevnikova SA, Budnevskiy AV, Ovsyannikov ES, Belov VN. [Particularity of the clinical course and quality of life of patients with chronic obstructive pulmonary disease on the background of the metabolic syndrome]. Medical News of North Caucasus. 2017;12(1):20–23. doi:10.14300/mnnc.2017.12006. [Article in Russian].
  3. Budnevsky AV, Isaeva YV, Malysh EY, Kozhevnikova SA. [Pulmonary rehabilitation as an effective method for optimizing therapeutic and preventive measures in patients with chronic obstructive pulmonary disease concurrent with metabolic syndrome]. Ter Arkh. 2016;88(8):25-29. doi: 10.17116/terarkh201688825-29. [Article in Russian].
  4. Provotorov VM, Budnevsky AV, Filatova YI. [Clinical manifestations of asthma during combination therapy using ceruloplasmin]. Ter Arkh. 2016;88(3):36-39. doi: 10.17116/terarkh201688336-39. [Article in Russian].
  5. Provotorov VM, Budnevsky AV, Filatova YI, Perfil'eva MV. [ANTIOXIDANT THERAPY OF BRONCHIAL ASTHMA]. Klin Med (Mosk). 2015;93(8):19-22. [Article in Russian].
  6. Li S, Koziol-White C, Jude J, Jiang M, Zhao H, Cao G, Yoo E, Jester W, Morley MP, Zhou S, Wang Y, Lu MM, Panettieri RA Jr, Morrisey EE. Epithelium-generated neuropeptide Y induces smooth muscle contraction to promote airway hyperresponsiveness. J Clin Invest. 2016 May 2;126(5):1978-82. doi: 10.1172/JCI81389.
  7. Cardell LO, Uddman R, Edvinsson L. Low plasma concentrations of VIP and elevated levels of other neuropeptides during exacerbations of asthma. Eur Respir J. 1994 Dec;7(12):2169-73. doi: 10.1183/09031936.94.07122169.
  8. Shende P, Desai D. Physiological and Therapeutic Roles of Neuropeptide Y on Biological Functions. Adv Exp Med Biol. 2020;1237:37-47. doi: 10.1007/5584_2019_427.
  9. Hofmann S, Bellmann-Sickert K, Beck-Sickinger AG. Chemical modification of neuropeptide Y for human Y1 receptor targeting in health and disease. Biol Chem. 2019 Feb 25;400(3):299-311. doi: 10.1515/hsz-2018-0364.
  10. Domin H. Neuropeptide Y Y2 and Y5 receptors as potential targets for neuroprotective and antidepressant therapies: Evidence from preclinical studies. Prog Neuropsychopharmacol Biol Psychiatry. 2021 Dec 20;111:110349. doi: 10.1016/j.pnpbp.2021.110349.
  11. Lin ST, Li YZ, Sun XQ, Chen QQ, Huang SF, Lin S, Cai SQ. Update on the Role of Neuropeptide Y and Other Related Factors in Breast Cancer and Osteoporosis. Front Endocrinol (Lausanne). 2021 Aug 6;12:705499. doi: 10.3389/fendo.2021.705499.
  12. Zheng YL, Wang WD, Li MM, Lin S, Lin HL. Updated Role of Neuropeptide Y in Nicotine-Induced Endothelial Dysfunction and Atherosclerosis. Front Cardiovasc Med. 2021 Feb 23;8:630968. doi: 10.3389/fcvm.2021.630968.
  13. Thangaratnarajah C, Dinger K, Vohlen C, Nawabi J, Lopez EG, Dobner J, et al. Novel NPY-mediated migratory effect on pulmonary fibroblasts and on IL-6 expression is related to accelerated lung growth after intrauterine growth restriction. Neuropeptides. 2016;55:11–2. doi: 10.1016/j.npep.2015.11.030.
  14. Macia L, Rao PT, Wheway J, Sierro F, Mackay F, Herzog H. Y1 signalling has a critical role in allergic airway inflammation. Immunol Cell Biol. 2011 Nov;89(8):882-8. doi: 10.1038/icb.2011.6.
  15. Makinde TO, Steininger R, Agrawal DK. NPY and NPY receptors in airway structural and inflammatory cells in allergic asthma. Exp Mol Pathol. 2013 Feb;94(1):45-50. doi: 10.1016/j.yexmp.2012.05.009.
  16. Lu Y, Andiappan AK, Lee B, Ho R, Lim TK, Kuan WS, Goh DY, Mahadevan M, Sim TB, Wang Y, Van Bever HP, Rotzschke O, Larbi A, Ng TP. Neuropeptide Y associated with asthma in young adults. Neuropeptides. 2016 Oct;59:117-121. doi: 10.1016/j.npep.2016.07.003.
  17. Lu Y, Van Bever HP, Lim TK, Kuan WS, Goh DY, Mahadevan M, Sim TB, Ho R, Larbi A, Ng TP. Obesity, asthma prevalence and IL-4: Roles of inflammatory cytokines, adiponectin and neuropeptide Y. Pediatr Allergy Immunol. 2015 Sep;26(6):530-6. doi: 10.1111/pai.12428.
  18. Cardell LO, Uddman R, Edvinsson L. Low plasma concentrations of VIP and elevated levels of other neuropeptides during exacerbations of asthma. Eur Respir J. 1994 Dec;7(12):2169-73. doi: 10.1183/09031936.94.07122169.
  19. Zhang L, Yin Y, Zhang H, Zhong W, Zhang J. Association of asthma diagnosis with leptin and adiponectin: a systematic review and meta-analysis. J Investig Med. 2017 Jan;65(1):57-64. doi: 10.1136/jim-2016-000127.
  20. Kurokawa A, Kondo M, Arimura K, Ashino S, Tagaya E. Less airway inflammation and goblet cell metaplasia in an IL-33-induced asthma model of leptin-deficient obese mice. Respir Res. 2021 Jun 1;22(1):166. doi: 10.1186/s12931-021-01763-3.
  21. Carpagnano GE, Scioscia G, Lacedonia D, Soccio P, Quarato CMI, Cotugno G, Palumbo MG, Foschino Barbaro MP. Searching for Inflammatory and Oxidative Stress Markers Capable of Clustering Severe Asthma. Arch Bronconeumol (Engl Ed). 2021 May;57(5):338-344. English, Spanish. doi: 10.1016/j.arbres.2020.04.024. 
  22. Mishra V, Banga J, Silveyra P. Oxidative stress and cellular pathways of asthma and inflammation: Therapeutic strategies and pharmacological targets. Pharmacol Ther. 2018 Jan;181:169-182. doi: 10.1016/j.pharmthera.2017.08.011.
  23. Otelea MR, Arghir OC, Zugravu C, Rascu A. Adiponectin and Asthma: Knowns, Unknowns and Controversies. Int J Mol Sci. 2021 Aug 20;22(16):8971. doi: 10.3390/ijms22168971.
  24. Karadogan B, Beyaz S, Gelincik A, Buyukozturk S, Arda N. Evaluation of oxidative stress biomarkers and antioxidant parameters in allergic asthma patients with different level of asthma control. J Asthma. 2021 Jan 8:1-15. doi: 10.1080/02770903.2020.1870129.

Download Article
Received October 30, 2021.
Accepted November 30, 2021.
©2021 International Medical Research and Development Corporation.