Prediction of Adverse Perinatal Outcomes and Preeclampsia in Pregnant Women with Chronic Arterial Hypertension

Victor E. Radzinsky, Bakhtykei M. Gasanova, Miroslava L. Polina, Natalya I. Douglas, Praskovya N. Zakharova, Tatyana V. Dedy

International Journal of Biomedicine. 2021;11(4):422-427.
DOI: 10.21103/Article11(4)_OA5
Originally published December 10, 2021


The objective of this study was to determine predictors and develop a prognostic model for preeclampsia (PE) and adverse perinatal outcomes in pregnant women with chronic arterial hypertension (CAH).
Methods and Results: The study cohort included pregnant women (n=376) with hypertensive disorders: Group 1 –pregnant women with CAH (n=134), Group 2 – with PE on the background of CAH (n=242). Healthy pregnant women made up the control group (n=34). The diagnosis of pregnant women with CAH was made on the basis of existing national and foreign recommendations that an increase in SBP ≥140 mmHg and/or DBP ≥90 mmHg indicates CAH. All patients underwent the following examinations: a survey on a special questionnaire; an anthropometric examination;  physical examination; an assessment of the content of uric acid (UA) in the blood serum and microalbuminuria (MAU) in the urine at 6-8 and 16-17 weeks of pregnancy; 12-lead ECG, echocardiography, 24-hour ambulatory blood pressure monitoring, sonography of the uterus, fetus, and placenta at 6-8 and 16-18 weeks. It was found that an inappropriate left ventricular mass (LVM) in pregnant women with CAH, a certain “phenotype” of 24-hour ABPM and indicators of metabolic disorders demonstrate the systemic nature of organ damage and appear to be a predictor of adverse perinatal outcomes and the development of PE. The revealed changes in the LV structure, which are more significant in PE on the background of CAH, suggest the association of concentric left ventricular hypertrophy and disorders of uteroplacental blood flow. Detecting abnormal blood flow from early pregnancy will reduce not only perinatal morbidity and premature birth, but also the probability of organ (LV myocardium, kidney) damage in women with CAH. To predict the risks of adverse perinatal outcomes in pregnant women with CAH and PE, a number of factors were identified that have a statistically significant relationship with the studied complications.  The developed model makes it possible to predict the probability of PE and unfavorable perinatal outcomes in pregnant women suffering from CAH with high efficiency (91.1%).

chronic arterial hypertension • preeclampsia • left ventricular mass • diastolic dysfunction • microalbuminuria • uric acid
  1. Ananth CV, Duzyj CM, Yadava S, Schwebel M, Tita ATN, Joseph KS. Changes in the Prevalence of Chronic Hypertension in Pregnancy, United States, 1970 to 2010. Hypertension. 2019 Nov;74(5):1089-1095. doi: 10.1161/HYPERTENSIONAHA.119.12968.
  2. Scott G, Gillon TE, Pels A, von Dadelszen P, Magee LA. Guidelines-similarities and dissimilarities: a systematic review of international clinical practice guidelines for pregnancy hypertension. Am J Obstet Gynecol. 2020 Aug 20:S0002-9378(20)30846-2. doi: 10.1016/j.ajog.2020.08.018.
  3. Nakanishi S, Aoki S, Nagashima A, Seki K. Incidence and pregnancy outcomes of superimposed preeclampsia with or without proteinuria among women with chronic hypertension. Pregnancy Hypertens. 2017 Jan;7:39-43. doi: 10.1016/j.preghy.2017.01.001. 
  4. Filipek A, Jurewicz E. Preeklampsja – choroba kobiet w ciąży [Preeclampsia - a disease of pregnant women]. Postepy Biochem. 2018 Dec 29;64(4):232-229. doi: 10.18388/pb.2018_146. [Article in  Polish].
  5. Moussa HN, Leon MG, Marti A, Chediak A, Pedroza C, Blackwell SC, Sibai BM. Pregnancy Outcomes in Women with Preeclampsia Superimposed on Chronic Hypertension with and without Severe Features. Am J Perinatol. 2017 Mar;34(4):403-408. doi: 10.1055/s-0036-1592134. 
  6. Becker R, Vonk R. Doppler sonography of uterine arteries at 20-23 weeks: depth of notch gives information on probability of adverse pregnancy outcome and degree of fetal growth restriction in a low-risk population. Fetal Diagn Ther. 2010;27(2):78-86. doi: 10.1159/000274377.
  7. Brown MA. Is there a role for ambulatory blood pressure monitoring in pregnancy? Clin Exp Pharmacol Physiol. 2014 Jan;41(1):16-21. doi: 10.1111/1440-1681.12106. 
  8. Tian TT, Li H, Chen SJ, Wang Q, Tian QW, Zhang BB, Zhu J, He GW, Lun LM, Xuan C. Serum Uric Acid as an Independent Risk Factor for the Presence and Severity of Early-Onset Coronary Artery Disease: A Case-Control Study. Dis Markers. 2018 Oct 23;2018:1236837. doi: 10.1155/2018/1236837. 
  9. Magee LA, von Dadelszen P, Rey E, Ross S, Asztalos E, Murphy KE, Menzies J, Sanchez J, Singer J, Gafni A, Gruslin A, Helewa M, Hutton E, Lee SK, Lee T, Logan AG, Ganzevoort W, Welch R, Thornton JG, Moutquin JM. Less-tight versus tight control of hypertension in pregnancy. N Engl J Med. 2015 Jan 29;372(5):407-17. doi: 10.1056/NEJMoa1404595.
  10. Webster LM, Conti-Ramsden F, Seed PT, Webb AJ, Nelson-Piercy C, Chappell LC. Impact of Antihypertensive Treatment on Maternal and Perinatal Outcomes in Pregnancy Complicated by Chronic Hypertension: A Systematic Review and Meta-Analysis. J Am Heart Assoc. 2017 May 17;6(5):e005526. doi: 10.1161/JAHA.117.005526. 
  11. Zhou D, Huang Y, Fu M, Cai A, Tang S, Feng Y. Prognostic value of tissue Doppler E/e' ratio in hypertension patients with preserved left ventricular ejection fraction. Clin Exp Hypertens. 2018;40(6):554-559. doi: 10.1080/10641963.2017.1407332. 
  12. Moran P, Lindheimer MD, Davison JM. The renal response to preeclampsia. Semin Nephrol. 2004 Nov;24(6):588-95. doi: 10.1016/s0270-9295(04)00130-5.
  13. Jayaballa M, Sood S, Alahakoon I, Padmanabhan S, Cheung NW, Lee V. Microalbuminuria is a predictor of adverse pregnancy outcomes including preeclampsia. Pregnancy Hypertens. 2015 Oct;5(4):303-7. doi: 10.1016/j.preghy.2015.08.001. 
  14. Nipanal HV, Maurrya DK, Susmitha S, Ravindra PN. Analysis of Proteinuria Estimation Methods in Hypertensive Disorders of Pregnancy. J Obstet Gynaecol India. 2018 Dec;68(6):452-455. doi: 10.1007/s13224-017-1057-5.
  15. Chen Q, Lau S, Tong M, Wei J, Shen F, Zhao J, Zhao M. Serum uric acid may not be involved in the development of preeclampsia. J Hum Hypertens. 2016 Feb;30(2):136-40. doi: 10.1038/jhh.2015.47. 
  16. Laughon SK, Catov J, Powers RW, Roberts JM, Gandley RE. First trimester uric acid and adverse pregnancy outcomes. Am J Hypertens. 2011 Apr;24(4):489-95. doi: 10.1038/ajh.2010.262.
  17. Bainbridge SA, Roberts JM, von Versen-Höynck F, Koch J, Edmunds L, Hubel CA. Uric acid attenuates trophoblast invasion and integration into endothelial cell monolayers. Am J Physiol Cell Physiol. 2009 Aug;297(2):C440-50. doi: 10.1152/ajpcell.00593.
  18. Asgharnia M, Mirblouk F, Kazemi S, Pourmarzi D, Mahdipour Keivani M, Dalil Heirati SF. Maternal serum uric acid level and maternal and neonatal complications in preeclamptic women: A cross-sectional study. Int J Reprod Biomed. 2017 Sep;15(9):583-588.
  19. Lin J, Hong XY, Tu RZ. The value of serum uric acid in predicting adverse pregnancy outcomes of women with hypertensive disorders of pregnancy. Ginekol Pol. 2018;89(7):375-380. doi: 10.5603/GP.a2018.0064.
  20. Voigt JU, Pedrizzetti G, Lysyansky P, Marwick TH, Houle H, Baumann R, et al. Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging. 2015;16(1):1-11. doi: 10.1093/ehjci/jeu184.
  21. Devereux RB, de Simone G, Ganau A, Roman MJ. Left ventricular hypertrophy and geometric remodeling in hypertension: stimuli, functional consequences and prognostic implications. J Hypertens Suppl. 1994;12(10):S117-27.
  22. de Simone G, Verdecchia P, Pede S, Gorini M, Maggioni AP. Prognosis of inappropriate left ventricular mass in hypertension: the MAVI Study. Hypertension. 2002 Oct;40(4):470-6. doi: 10.1161/01.hyp.0000034740.99323.8a.
  23. Koren MJ, Devereux RB, Casale PN, Savage DD, Laragh JH. Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intern Med. 1991 Mar 1;114(5):345-52. doi: 10.7326/0003-4819-114-5-345. 
  24. Devereux RB, Lutas EM, Casale PN, Kligfield P, Eisenberg RR, Hammond IW, Miller DH, Reis G, Alderman MH, Laragh JH. Standardization of M-mode echocardiographic left ventricular anatomic measurements. J Am Coll Cardiol. 1984 Dec;4(6):1222-30. doi: 10.1016/s0735-1097(84)80141-2. 
  25. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015 Mar;16(3):233-70. doi: 10.1093/ehjci/jev014. Erratum in: Eur Heart J Cardiovasc Imaging. 2016 Apr;17(4):412. 
  26. Lamarca B. The role of immune activation in contributing to vascular dysfunction and the pathophysiology of hypertension during preeclampsia. Minerva Ginecol. 2010 Apr;62(2):105-20. 
  27. Poon LC, Karagiannis G, Leal A, Romero XC, Nicolaides KH. Hypertensive disorders in pregnancy: screening by uterine artery Doppler imaging and blood pressure at 11-13 weeks. Ultrasound Obstet Gynecol. 2009 Nov;34(5):497-502. doi: 10.1002/uog.7439.
  28. Mönckeberg M, Arias V, Fuenzalida R, Álvarez S, Toro V, Calvo A, Kusanovic JP, Monteiro LJ, Schepeler M, Nien JK, Martinez J, Illanes SE. Diagnostic Performance of First Trimester Screening of Preeclampsia Based on Uterine Artery Pulsatility Index and Maternal Risk Factors in Routine Clinical Use. Diagnostics (Basel). 2020 Mar 26;10(4):182. doi: 10.3390/diagnostics10040182. 
  29. Mula R, Meler E, Albaiges G, Rodriguez I. Strategies for the prediction of late preeclampsia. J Matern Fetal Neonatal Med. 2019 Nov;32(22):3729-3733. doi: 10.1080/14767058.2018.1471592. 
  30. Peyrin-Biroulet L, Williet N, Cacoub P. Guidelines on the diagnosis and treatment of iron deficiency across indications: a systematic review. Am J Clin Nutr. 2015 Dec;102(6):1585-94. doi: 10.3945/ajcn.114.103366
  31. Ambia AM, Morgan JL, Wells CE, Roberts SW, Sanghavi M, Nelson DB, Cunningham FG. Perinatal outcomes associated with abnormal cardiac remodeling in women with treated chronic hypertension. Am J Obstet Gynecol. 2018 May;218(5):519.e1-519.e7. doi: 10.1016/j.ajog.2018.02.015.
  32. Kim MJ, Seo J, Cho KI, Yoon SJ, Choi JH, Shin MS. Echocardiographic Assessment of Structural and Hemodynamic Changes in Hypertension-Related Pregnancy. J Cardiovasc Ultrasound. 2016 Mar;24(1):28-34. doi: 10.4250/jcu.2016.24.1.28. 
  33. Castleman JS, Ganapathy R, Taki F, Lip GY, Steeds RP, Kotecha D. Echocardiographic Structure and Function in Hypertensive Disorders of Pregnancy: A Systematic Review. Circ Cardiovasc Imaging. 2016 Sep;9(9):e004888. doi: 10.1161/CIRCIMAGING.116.004888. 
  34. Khaliq OP, Konoshita T, Moodley J, Naicker T. The Role of Uric Acid in Preeclampsia: Is Uric Acid a Causative Factor or a Sign of Preeclampsia? Curr Hypertens Rep. 2018 Jul 10;20(9):80. doi: 10.1007/s11906-018-0878-7. 
  35. Kumar N, Singh AK, Maini B. Impact of maternal serum uric acid on perinatal outcome in women with hypertensive disorders of pregnancy: A prospective study. Pregnancy Hypertens. 2017 Oct;10:220-225. doi: 10.1016/j.preghy.2017.10.002. 
  36. Chescheir NC. Serum Uric Acid Measurement in Women With Hypertensive Disorders of Pregnancy. Obstet Gynecol. 2019 Sep;134(3):636-638. doi: 10.1097/AOG.0000000000003408.
  37. Kang DH, Finch J, Nakagawa T, Karumanchi SA, Kanellis J, Granger J, Johnson RJ. Uric acid, endothelial dysfunction and pre-eclampsia: searching for a pathogenetic link. J Hypertens. 2004 Feb;22(2):229-35. doi: 10.1097/00004872-200402000-00001. 

Download Article
Received August 28, 2021.
Accepted October 11, 2021.
©2021 International Medical Research and Development Corporation.