Possible Unexplored Aspects of Covid-19 Pathogenesis: The Role of Carboxypeptidase A3

Andrey V. Budnevsky, Evgeniy S. Ovsyannikov, Victoria V. Shishkina, Dmitry I. Esaulenko, Bogdan R. Shumilovich, Inessa A. Savushkina, Nadezhda G. Alekseeva

 
International Journal of Biomedicine. 2022;12(2):179-182.
DOI: 10.21103/Article12(2)_RA1
Originally published June 5, 2022

Abstract: 

Background: Coronavirus disease 2019 (COVID-19) is a contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). First reported in 2019, it has already caused more than 500 million cases worldwide. The problem of COVID-19 treatment is still relevant, and it is necessary to study in detail the pathogenesis of COVID-19, including the involvement of different immune cells and their mediators. There is increasing evidence of the important role of mast cells (MCs) and their specific protease carboxypeptidase A3 (CPA3) in the pathogenesis of COVID-19. MCs chymase and tryptase are already well studied, while CPA3 is of growing interest. The aim of this review is to study the CPA3 features and mechanisms of its participation in the pathogenesis of COVID-19 and some other infectious and non-infectious diseases.
Methods and Results: A literature search was carried out using Scopus, Web of Science, PubMed, Medline, and E-Library databases. Of the158 articles analyzed, 33 were included in the review. CPA3, expressed by MCs in various organs, including human lungs, plays a role in the pathogenesis of COVID-19 by indirectly causing pulmonary fibrosis, associating with levels of inflammatory cytokines and chemokines, and severity of COVID-19.

Keywords: 
COVID-19 • mast cells • carboxypeptidase A3
References: 
  1. Wernersson S, Pejler G. Mast cell secretory granules: armed for battle. Nat Rev Immunol. 2014 Jul;14(7):478-94. doi: 10.1038/nri3690.
  2.  Grujic M, Hellman L, Gustafson AM, Akula S, Melo FR, Pejler G. Protective role of mouse mast cell tryptase Mcpt6 in melanoma. Pigment. Cell Melanoma Res. 2020;33:579–590. doi: 10.1111/pcmr.12859.
  3.  Siddhuraj P, Clausson CM, Sanden C, Alyamani M, Kadivar M, Marsal J, et al. Lung Mast Cells Have a High Constitutive Expression of Carboxypeptidase A3 mRNA That Is Independent from Granule-Stored CPA3. Cells. 2021;10:309. doi: 10.3390/cells10020309
  4. Akula S, Hellman L, Avilés FX, Wernersson S. Analysis of the mast cell expressed carboxypeptidase A3 and its structural and evolutionary relationship to other vertebrate carboxypeptidases. Dev Comp Immunol. 2022 Feb;127:104273. doi: 10.1016/j.dci.2021.104273. 
  5. Pejler G, Abrink M, Ringvall M, Wernersson S. Mast cell proteases. Adv Immunol. 2007;95:167-255. doi: 10.1016/S0065-2776(07)95006-3
  6. Abonia JP, Blanchard C, Butz BB, Rainey HF, Collins MH, Stringer K, et al. Involvement of mast cells in eosinophilic esophagitis. J Allergy Clin Immunol. 2010 Jul;126(1):140-9. doi: 10.1016/j.jaci.2010.04.009.
  7. Lilla JN, Chen CC, Mukai K, BenBarak MJ, Franco CB, Kalesnikoff J, et al. Reduced mast cell and basophil numbers and function in Cpa3-Cre; Mcl-1fl/fl mice. Blood. 2011 Dec 22;118(26):6930-8. doi: 10.1182/blood-2011-03-343962.
  8. Hämäläinen S, Kareinen L, Sukura A, Kareinen I. Carboxypeptidase A3 expression in canine mast cell tumors and tissue-resident mast cells. Vet Pathol. 2022 Mar;59(2):236-243. doi: 10.1177/03009858211062636.
  9. Kalinina E, Biswas R, Berezniuk I, Hermoso A, Aviles FX, Fricker LD. A novel subfamily of mouse cytosolic carboxypeptidases. FASEB J. 2007 Mar;21(3):836-50. doi: 10.1096/fj.06-7329com.
  10. Piliponsky AM, Chen CC, Nishimura T, Metz M, Rios EJ, Dobner PR, Wada E, Wada K, Zacharias S, Mohanasundaram UM, Faix JD, Abrink M, Pejler G, Pearl RG, Tsai M, Galli SJ. Neurotensin increases mortality and mast cells reduce neurotensin levels in a mouse model of sepsis. Nat Med. 2008 Apr;14(4):392-8. doi: 10.1038/nm1738. 
  11. Ramirez-GarciaLuna JL, Chan D, Samberg R, Abou-Rjeili M, Wong T.H, Li A, et al. Defective bone repair in mast cell-deficient Cpa3Cre/+ mice. PLoS ONE. 2017;12:e0174396. doi: 10.1371/journal.pone.0174396. 
  12. Lewicki Ł, Siebert J, Koliński T, Piekarska K, Reiwer-Gostomska M, Targoński R, Trzonkowski P, Marek-Trzonkowska N. Mast cell derived carboxypeptidase A3 is decreased among patients with advanced coronary artery disease. Cardiol J. 2019;26(6):680-686. doi: 10.5603/CJ.a2018.0018. 
  13. Collins MH, Martin LJ, Wen T, Abonia JP, Putnam PE, Mukkada VA, Rothenberg ME. Eosinophilic Esophagitis Histology Remission Score: Significant Relations to Measures of Disease Activity and Symptoms. J Pediatr Gastroenterol Nutr. 2020 May;70(5):598-603. doi: 10.1097/MPG.0000000000002637. 
  14. Winter NA, Gibson PG, McDonald VM, Fricker M. Sputum Gene Expression Reveals Dysregulation of Mast Cells and Basophils in Eosinophilic COPD. Int J Chron Obstruct Pulmon Dis. 2021 Jul 21;16:2165-2179. doi: 10.2147/COPD.S305380.
  15. Dellon ES, Selitsky SR, Genta RM, Lash RH, Parker JS. Gene expression-phenotype associations in adults with eosinophilic esophagitis. Dig Liver Dis. 2018 Aug;50(8):804-811. doi: 10.1016/j.dld.2018.03.021. 
  16. Sallis BF, Acar U, Hawthorne K, Babcock SJ, Kanagaratham C, Goldsmith JD, Rosen R, Vanderhoof JA, Nurko S, Fiebiger E. A Distinct Esophageal mRNA Pattern Identifies Eosinophilic Esophagitis Patients With Food Impactions. Front Immunol. 2018 Nov 5;9:2059. doi: 10.3389/fimmu.2018.02059.
  17. Wu B, Tao L, Yang D, Li W, Xu H, He Q. Development of an Immune Infiltration-Related Eight-Gene Prognostic Signature in Colorectal Cancer Microenvironment. Biomed Res Int. 2020 Aug 27;2020:2719739. doi: 10.1155/2020/2719739. 
  18. Fricker M, Gibson PG, Powell H, Simpson JL, Yang IA, Upham JW, Reynolds PN, Hodge S, James AL, Jenkins C, Peters MJ, Marks GB, Baraket M, Baines KJ. A sputum 6-gene signature predicts future exacerbations of poorly controlled asthma. J Allergy Clin Immunol. 2019 Jul;144(1):51-60.e11. doi: 10.1016/j.jaci.2018.12.1020. 
  19. Sverrild A, Bergqvist A, Baines KJ, Porsbjerg C, Andersson CK, Thomsen SF, Hoffmann HJ, Gibson P, Erjefält JS, Backer V. Airway responsiveness to mannitol in asthma is associated with chymase-positive mast cells and eosinophilic airway inflammation. Clin Exp Allergy. 2016 Feb;46(2):288-97. doi: 10.1111/cea.12609. 
  20. Yan Z, Liu L, Jiao L, Wen X, Liu J, Wang N. Bioinformatics Analysis and Identification of Underlying Biomarkers Potentially Linking Allergic Rhinitis and Asthma. Med Sci Monit. 2020 May 27;26:e924934. doi: 10.12659/MSM.924934.
  21. Sanglas L, Aviles FX, Huber R, Gomis-Rüth FX, Arolas JL. Mammalian metallopeptidase inhibition at the defense barrier of Ascaris parasite. Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1743-7. doi: 10.1073/pnas.0812623106. 
  22. Rajamanickam A, Munisankar S, Bhootra Y, Dolla CK, Nutman TB, Babu S. Elevated Systemic Levels of Eosinophil, Neutrophil, and Mast Cell Granular Proteins in Strongyloides Stercoralis Infection that Diminish following Treatment. Front Immunol. 2018 Feb 9;9:207. doi: 10.3389/fimmu.2018.00207. 
  23. Metz M, Piliponsky AM, Chen CC. Mast cells can enhance resistance to snake and honeybee venoms. Science. 2006;313(5786):526-530. doi:10.1126/science.1128877
  24. De Souza DA Jr, Toso VD, Campos MR, Lara VS, Oliver C, Jamur MC. Expression of mast cell proteases correlates with mast cell maturation and angiogenesis during tumor progression. PLoS One. 2012;7(7):e40790. doi: 10.1371/journal.pone.0040790
  25. Thaiwong T, Cirillo JV, Heller J, Kiupel M. Expression of Carboxypeptidase A3 and Tryptase as Markers for Lymph Node Metastasis of Canine Cutaneous Mast Cell Tumors. Front Vet Sci. 2022 Feb 14;9:815658. doi: 10.3389/fvets.2022.815658.
  26. Uhlén M, Fagerberg L, Hallström BM. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419. doi: 10.1126/science.1260419
  27. Pejler G. The emerging role of mast cell proteases in asthma. Eur Respir J. 2019 Oct 31;54(4):1900685. doi: 10.1183/13993003.00685-2019. 
  28. George PM, Wells AU, Jenkins RG. Pulmonary fibrosis and COVID-19: the potential role for antifibrotic therapy. Lancet Respir Med. 2020;8(8):807-815. doi: 10.1016/S2213-2600(20)30225-3
  29. Reddanna P, Prabhu KS, Whelan J, Reddy CC. Carboxypeptidase A-catalyzed direct conversion of leukotriene C4 to leukotriene F4. Arch Biochem Biophys. 2003 May 15;413(2):158-63. doi: 10.1016/s0003-9861(03)00080-8. 
  30. Soria-Castro R, Meneses-Preza YG, Rodríguez-López GM, Romero-Ramírez S, Sosa-Hernández VA, Cervantes-Díaz R, et al. Severe COVID-19 is marked by dysregulated serum levels of carboxypeptidase A3 and serotonin. J Leukoc Biol. 2021 Sep;110(3):425-431. doi: 10.1002/JLB.4HI0221-087R.
  31. Gebremeskel S, Schanin J, Coyle KM, Butuci M, Luu T, Brock EC, Xu A, Wong A, Leung J, Korver W, Morin RD, Schleimer RP, Bochner BS, Youngblood BA. Mast Cell and Eosinophil Activation Are Associated With COVID-19 and TLR-Mediated Viral Inflammation: Implications for an Anti-Siglec-8 Antibody. Front Immunol. 2021 Mar 10;12:650331. doi: 10.3389/fimmu.2021.650331. 

Download Article
Received May 4, 2022.
Accepted May 26, 2022.
©2022 International Medical Research and Development Corporation.