Oxidative Stress Intensity in Children and Adolescents with a New Coronavirus Infection

Lyubov V. Rychkova, Marina A. Darenskaya, Natalya V. Semenova, Sergey I. Kolesnikov, Alla G. Petrova, Olga A. Nikitina, Anastasia S. Brichagina, Lyubov I. Kolesnikova

International Journal of Biomedicine. 2022;12(2):242-246.
DOI: 10.21103/Article12(2)_OA7
Originally published June 5, 2022


The aim of our research was to assess the intensity of oxidative stress (OS) in children and adolescents with COVID-19 using the oxidative stress index (OSI).
Methods and Results: The study was conducted between May 2020 and March 2021. The main group included 17 children and adolescents [8(47.1%) boys and 9(52.9%) girls; mean age of 12.35±4.01 years] with diagnosed COVID-19 infection (mild to moderate course) selected as a result of the primary diagnostic examination from among those admitted to hospitalization at the Irkutsk Regional Infectious Diseases Clinical Hospital. The control group included 17 healthy children and adolescents (average age of 12.35±4.01 years) matched by copy-pair type.
The obtained data indicated statistically significant differences in a number of parameters between children and adolescents with COVID-19 and the control groups. We found statistically significant higher levels of LPO products (CDs, P<0.0001; KD and CT, P=0.006; and TBARs, P=0.013) in the study group than in the control group. Among AOD system parameters, the levels of retinol (P=0.015) and reduced glutathione (P=0.048) and SOD activity (P<0.0001) were statistically lower in the study group than in the control group.  The OSI level was significantly greater (by 8.5 times, P=0.028) in the study group than in the control group, which confirms the development of antioxidant deficiency in COVID-19.
Conclusion: The results of the assessment of OSI in children and adolescents with COVID-19 indicate insufficient activity of some critical components of AOD and a shift of the redox balance toward pro-oxidant factors, which can have extremely negative consequences in the development of the disease. In this regard, we recommend carrying out corrective measures to stabilize LPO/AOD parameters by including drugs with antioxidant properties in the treatment complex.

COVID-19 • oxidative stress index • children • adolescents • polymerase chain reaction
  1. WHO Coronavirus (COVID-19) Dashboard. https://covid19.who.int/
  2. Liu K, Chen Y, Lin R, Han K. Clinical features of COVID-19 in elderly patients: A comparison with young and middle-aged patients. J Infect. 2020 Jun;80(6):e14-e18. doi: 10.1016/j.jinf.2020.03.005. 
  3. Mazankova LN, Samitova ER, Osmanov IM, Afukov II, Dracheva NA, Malakhov AB, et al. Clinical and epidemiological features of the course of a new coronavirus infection COVID-19 in children during periods of increased incidence in Moscow in 2020-2021. Children's infections. 2021;20(3):5-10.
  4. On the state of sanitary and epidemiological well-being of the population in the Russian Federation in 2020: State report. Moscow: Federal Service for Supervision of Consumer Rights Protection and Human Welfare, 2021;256.
  5. Siegel DA, Reses HE, Cool AJ, Shapiro CN, Hsu J, Boehmer TK, et al. Trends in COVID-19 Cases, Emergency Department Visits, and Hospital Admissions Among Children and Adolescents Aged 0-17 Years - United States, August 2020-August 2021. MMWR Morb Mortal Wkly Rep. 2021 Sep 10;70(36):1249-1254. doi: 10.15585/mmwr.mm7036e1. Erratum in: MMWR Morb Mortal Wkly Rep. 2021 Sep 24;70(38):1355. 
  6. Blanchard-Rohner G, Didierlaurent A, Tilmanne A, Smeesters P, Marchant A. Pediatric COVID-19: Immunopathogenesis, Transmission and Prevention. Vaccines (Basel). 2021 Sep 8;9(9):1002. doi: 10.3390/vaccines9091002.
  7. Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 2020 May;109:102433. doi: 10.1016/j.jaut.2020.102433. 
  8. Khomich OA, Kochetkov SN, Bartosch B, Ivanov AV. Redox Biology of Respiratory Viral Infections. Viruses. 2018 Jul 26;10(8):392. doi: 10.3390/v10080392. 
  9. Delgado-Roche L, Mesta F. Oxidative Stress as Key Player in Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) Infection. Arch Med Res. 2020 Jul;51(5):384-387. doi: 10.1016/j.arcmed.2020.04.019.
  10. Voronina TA. Antioxidants/antihypoxants: the missing puzzle piece in effective pathogenetic therapy for COVID-19. Infectious Diseases. 2020;18(2):97-102. doi: 10.20953/1729-9225-2020-2-97-102.[Article in Russian].
  11. Darenskaya MA, Kolesnikova LI, Kolesnikov SI. [COVID-19: Oxidative Stress and the Relevance of Antioxidant Therapy]. Annals of the Russian Academy of Medical Sciences. 2020;75(4):318–325. doi: 10.15690/vramn1360.[Article in Russian].
  12. Cárdenas-Rodríguez N, Bandala C, Vanoye-Carlo A, Ignacio-Mejía I, Gómez-Manzo S, Hernández-Cruz EY, Pedraza-Chaverri J, Carmona-Aparicio L, Hernández-Ochoa B. Use of Antioxidants for the Neuro-Therapeutic Management of COVID-19. Antioxidants (Basel). 2021 Jun 17;10(6):971. doi: 10.3390/antiox10060971. 
  13. Kolesnikova LI, Semyonova NV, Grebenkina LA, Darenskaya MA, Suturina LV, Gnusina SV. Integral indicator of oxidative stress in human blood. Bull Exp Biol Med. 2014 Oct;157(6):715-7. doi: 10.1007/s10517-014-2649-z.  [Article in Russian]
  14. Darenskaya MA, Rychkova LV, Kolesnikov SI, Kravtsova OV, Semenova NV, Brichagina AS, et al. Oxidative stress index levels in Asian adolescents with exogenous-constitutional obesity. International Journal of Biomedicine. 2022;12(1):142-146. doi: 10.21103/Article12(1)_OA16
  15. Darenskaya M.A., Gavrilova O.A., Rychkova L.V., Kravtsova O.V., Grebenkina L.A., Osipova E.V., et al. The assessment of oxidative stress intensity in adolescents with obesity by the integral index. International Journal of Biomedicine. 2018;8(1):37-41. doi: 10.21103/Article8(1)_OA5
  16. Kolesnikova LI, Rychkova LV, Kolesnikov SI, Darenskaya MA, Gavrilova OA, Kravtsova OV, et al. [The evaluation of the lipid peroxidation system and antioxidant defense in adolescent boys with exogenously constitutive obesity with using the coefficient of oxidative stress]. Voprosy pitaniia [Problems of Nutrition]. 2018;87(1):28-34. doi: 10.24411/0042-8833-2018-10003.[Article in Russian].
  17. Volchegorskiy IA, Nalimov AG, Yarovinskiy BG, Lifshitz RI. [Comparison of different approaches to the determination of lipid peroxidation products in heptane-isopropanol extracts of blood]. Voprosy Meditsinskoi Khimii. 1989;35(1):127-131. [Article in Russian]
  18. Gavrilov VB, Gavrilova AR, Mazhul LM. Analysis of methods for determining the products of lipid peroxidation in blood serum by the test with thiobarbituric acid. Voprosy Meditsinskoi Khimii.1987;1:118-122. [Article in Russian]
  19. Chernyauskene RCh, Varskevichene ZZ, Grybauskas PS. ]Simultaneous determination of the concentrations of vitamins E and A in blood serum\. Laboratornoe Delo. 1984;6:362–365. [Article in Russian]
  20. Hissin PJ, Hilf R. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem. 1976 Jul;74(1):214-26. doi: 10.1016/0003-2697(76)90326-2. 
  21. Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972 May 25;247(10):3170-5. 
  22. Brodin P. Why is COVID-19 so mild in children? Acta Paediatr. 2020 Jun;109(6):1082-1083. doi: 10.1111/apa.15271. 
  23. Lee PI, Hu YL, Chen PY, Huang YC, Hsueh PR. Are children less susceptible to COVID-19? J Microbiol Immunol Infect. 2020 Jun;53(3):371-372. doi: 10.1016/j.jmii.2020.02.011. 
  24. Zhu L, Lu X, Chen L. Possible causes for decreased susceptibility of children to coronavirus. Pediatr Res. 2020 Sep;88(3):342. doi: 10.1038/s41390-020-0892-8. 
  25. Keles ES. Mild SARS-CoV-2 infections in children might be based on evolutionary biology and linked with host reactive oxidative stress and antioxidant capabilities. New Microbes New Infect. 2020 Jun 24;36:100723. doi: 10.1016/j.nmni.2020.100723. 
  26. Suhail S, Zajac J, Fossum C, Lowater H, McCracken C, Severson N, Laatsch B, Narkiewicz-Jodko A, Johnson B, Liebau J, Bhattacharyya S, Hati S. Role of Oxidative Stress on SARS-CoV (SARS) and SARS-CoV-2 (COVID-19) Infection: A Review. Protein J. 2020 Dec;39(6):644-656. doi: 10.1007/s10930-020-09935-8. 
  27. Darenskaya M, Kolesnikova L, Kolesnikov S. The Association of Respiratory Viruses with Oxidative Stress and Antioxidants. Implications for the COVID-19 Pandemic. Curr Pharm Des. 2021;27(13):1618-1627. doi: 10.2174/1381612827666210222113351.
  28. Alwazeer D, Liu FF, Wu XY, LeBaron TW. Combating Oxidative Stress and Inflammation in COVID-19 by Molecular Hydrogen Therapy: Mechanisms and Perspectives. Oxid Med Cell Longev. 2021 Oct 4;2021:5513868. doi: 10.1155/2021/5513868. 
  29. Melekhina EV, Muzyka AD, Soldatova EY, Esakova NV, Voronko OP, Evsyukov RV, et al. [New possibilities of anti-inflammatory therapy in the complex treatment of patients with COVID-19]. Infectious Diseases. 2021;19(2):27-36. [Article in Russian]
  30. Ziegler CGK, Allon SJ, Nyquist SK, Mbano IM, Miao VN, Tzouanas CN, et al.; HCA Lung Biological Network. Electronic address: lung-network@humancellatlas.org; HCA Lung Biological Network. SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell. 2020 May 28;181(5):1016-1035.e19. doi: 10.1016/j.cell.2020.04.035.
  31. Kolesnikova LI, Darenskaya MA, Grebenkina LA, Osipova EV, Dolgikh MI, Natyaganova LV. [The state of the antioxidant status of children of different ages]. Voprosy Pitaniia. 2013;82(4):27-33. [Article in Russian]
  32. Beltrán-García J, Osca-Verdegal R, Pallardó FV, Ferreres J, Rodríguez M, Mulet S, Sanchis-Gomar F, Carbonell N, García-Giménez JL. Oxidative Stress and Inflammation in COVID-19-Associated Sepsis: The Potential Role of Anti-Oxidant Therapy in Avoiding Disease Progression. Antioxidants (Basel). 2020 Sep 29;9(10):936. doi: 10.3390/antiox9100936.
  33. Kolesnikova LI, Darenskaya MA, Kolesnikov SI. Free radical oxidation: a pathophysiologist's view. Bulletin of Siberian Medicine. 2017;16(4):16-29. doi: 10.20538/1682-0363-2017-4-16–29. [Article in Russian].
  34. Dao DQ, Ngo TC, Thong NM, Nam PC. Is Vitamin A an Antioxidant or a Pro-oxidant? J Phys Chem B. 2017 Oct 12;121(40):9348-9357. doi: 10.1021/acs.jpcb.7b07065. Epub 2017 Sep 28. PMID: 28937764.
  35. Zhitnikova LM. [The use of a vitamin antioxidant complex in frequently ill children and children with atopy]. Infectious Diseases. 2011;4:70-74. [Article in Russian]
  36. Yerbasskaya AV, Govorova LV, Ivanova VV, Zheleznikova GF. [Free radical oxidation, hormonal and immune status in children with acute respiratory infection and pneumonia]. Infectious diseases. 2012;10(3):29-37. [Article in Russian]
  37. Aykac K, Ozsurekci Y, Yayla BCC, Gurlevik SL, Oygar PD, Bolu NB, Tasar MA, Erdinc FS, Ertem GT, Neselioglu S, Erel O, Cengiz AB, Ceyhan M. Oxidant and antioxidant balance in patients with COVID-19. Pediatr Pulmonol. 2021 Sep;56(9):2803-2810. doi: 10.1002/ppul.25549. 

Download Article
Received April 27, 2022.
Accepted June 1, 2022.
©2022 International Medical Research and Development Corporation.