The Influence of Sustained Mercury Exposure on Prothrombin Time and Partial Thromboplastin Time among Sudanese Gold Mining Workers

Rimonda Emil Tadros, Elharam Ibrahim Abdallah, Alaa Eltayeb Omer, Abdel Rahim Mahmoud Muddathir, Lienda Bashier Eltayeb

 
International Journal of Biomedicine. 2022;12(2):251-255.
DOI: 10.21103/Article12(2)_OA9
Originally published June 5, 2022

Abstract: 

Background: Gold mining is the world's leading source of anthropogenic mercury pollution, negatively impacting not only miners but also the surrounding inhabitants; it has many effects on human health, especially cardiovascular problems, which lead to coagulation disorders and an increase in morbidity and mortality rate. The present study aimed to determine the prothrombin time (PT) and partial thromboplastin time (PTT) among Sudanese gold mining workers exposed to mercury.
Methods and Results: This cross-sectional study was carried out among mining workers in the Red Sea state. A total of 50 mining workers were enrolled in the case group, and 50 non-mining apparently healthy subjects were the control group. About 5 ml of whole blood samples were collected in 3.2% sodium citrate blood collection tubes. Platelet poor plasma (PPP) for prothrombin time (PT) and partial thromboplastin time (PTT) measurements was obtained by using high-speed centrifugation. PT and PTT tests were performed using a standard method (Practical-Haemostasis.com.) with a Helena C2 coagulometer (Germany) and reagents manufactured by the Bio-med trademark (China). The mean age of miners was 33.5±11.5 years and occupation time - 1.94±2.1 years. The mean value of PTT was greater in the case group than in the control group (42.43±6.18 sec vs. 37.76±5.33 sec, P=0.000).  In the age subgroup <40 years, the PT level was longer than in the age subgroup >40 years:  14.04±1.38 sec vs. 13.15±1.35 sec (P=0.045), respectively. The correlation analysis revealed a significant, direct correlation between PTT and occupation time (r=0.357, P=0.011).
Conclusion: Prolonged coagulation time, notably PTT, has been revealed among mining workers, implying that these workers may have a clinically silent state of coagulation abnormalities.

Keywords: 
mercury • mining workers • prothrombin time • partial thromboplastin time • platelet poor plasma
References: 
  1. Valera B, Dewailly E, Poirier P. Cardiac autonomic activity and blood pressure among Nunavik Inuit adults exposed to environmental mercury: a cross-sectional study. Environ Health. 2008 Jun 6;7:29. doi: 10.1186/1476-069X-7-29. 
  2. Toxicological Profile for Mercury. Atlanta, GA: Agency for Toxic Substances and Disease Registry; 2007.
  3.  Ibrahim D, Froberg B, Wolf A, Rusyniak DE. Heavy metal poisoning: clinical presentations and pathophysiology. Clin Lab Med. 2006 Mar;26(1):67-97, viii. doi: 10.1016/j.cll.2006.02.003. 
  4. Nordberg M, Nordberg GF. Toxicological aspects of metallothionein. Cell Mol Biol (Noisy-le-grand). 2000 Mar;46(2):451-63.
  5. Hassai Gold Mine, Sudan. Available from: https://www.mining-technology.com/projects/hassai-mine/
  6. Dargan PI, Giles LJ, Wallace CI, House IM, Thomson AH, Beale RJ, Jones AL. Case report: severe mercuric sulphate poisoning treated with 2,3-dimercaptopropane-1-sulphonate and haemodiafiltration. Crit Care. 2003 Jun;7(3):R1-6. doi: 10.1186/cc1887. 
  7. Vahabzadeh M, Balali-Mood M. Occupational Metallic Mercury Poisoning in Gilders. Int J Occup Environ Med. 2016 Apr;7(2):116-22. doi: 10.15171/ijoem.2016.776.
  8. Triunfante P, Soares ME, Santos A, Tavares S, Carmo H, Bastos Mde L. Mercury fatal intoxication: two case reports. Forensic Sci Int. 2009 Jan 30;184(1-3):e1-6. doi: 10.1016/j.forsciint.2008.10.023. 
  9. Katsuma A, Hinoshita F, Masumoto S, Hagiwara A, Kimura A. Acute renal failure following exposure to metallic mercury. Clin Nephrol. 2014 Jul;82(1):73-6. doi: 10.5414/CN107669.
  10. Suwalsky M, Ungerer B, Villena F, Cuevas F, Sotomayor CP. HgCl2 disrupts the structure of the human erythrocyte membrane and model phospholipid bilayers. J Inorg Biochem. 2000 Oct 1;81(4):267-73. doi: 10.1016/s0162-0134(00)00105-7.
  11. Houston MC. Role of mercury toxicity in hypertension, cardiovascular disease, and stroke. J Clin Hypertens (Greenwich). 2011 Aug;13(8):621-7. doi: 10.1111/j.1751-7176.2011.00489.x. 
  12. Salonen JT, Seppänen K, Lakka TA, Salonen R, Kaplan GA. Mercury accumulation and accelerated progression of carotid atherosclerosis: a population-based prospective 4-year follow-up study in men in eastern Finland. Atherosclerosis. 2000 Feb;148(2):265-73. doi: 10.1016/s0021-9150(99)00272-5. 
  13. InSug O, Datar S, Koch CJ, Shapiro IM, Shenker BJ. Mercuric compounds inhibit human monocyte function by inducing apoptosis: evidence for formation of reactive oxygen species, development of mitochondrial membrane permeability transition and loss of reductive reserve. Toxicology. 1997 Dec 31;124(3):211-24. doi: 10.1016/s0300-483x(97)00153-4. 
  14. Wiggers GA, Peçanha FM, Briones AM, Pérez-Girón JV, Miguel M, Vassallo DV, Cachofeiro V, Alonso MJ, Salaices M. Low mercury concentrations cause oxidative stress and endothelial dysfunction in conductance and resistance arteries. Am J Physiol Heart Circ Physiol. 2008 Sep;295(3):H1033-H1043. doi: 10.1152/ajpheart.00430.2008. 
  15. Kobal AB, Horvat M, Prezelj M, Briski AS, Krsnik M, Dizdarevic T, Mazej D, Falnoga I, Stibilj V, Arneric N, Kobal D, Osredkar J. The impact of long-term past exposure to elemental mercury on antioxidative capacity and lipid peroxidation in mercury miners. J Trace Elem Med Biol. 2004;17(4):261-74. doi: 10.1016/S0946-672X(04)80028-2. 
  16. Rungby J, Ernst E. Experimentally induced lipid peroxidation after exposure to chromium, mercury or silver: interactions with carbon tetrachloride. Pharmacol Toxicol. 1992 Mar;70(3):205-7. doi: 10.1111/j.1600-0773.1992.tb00458.x. 
  17. Lin TH, Huang YL, Huang SF. Lipid peroxidation in liver of rats administrated with methyl mercuric chloride. Biol Trace Elem Res. 1996 Jul;54(1):33-41. doi: 10.1007/BF02785318.
  18. Kishimoto T, Oguri T, Abe M, Kajitani H, Tada M. Inhibitory effect of methylmercury on migration and tube formation by cultured human vascular endothelial cells. Arch Toxicol. 1995;69(6):357-61. doi: 10.1007/s002040050184. 
  19. Committee on the Toxicological Effects of Methylmercury, Board on Environmental Studies and Toxicology, Commission on Life Sciences . Toxicological Effects of Methylmercury. Washington, D.C.: National Research Council, 2000. 
  20.  Clarkson TW, Magos L, Myers GJ. The toxicology of mercury--current exposures and clinical manifestations. N Engl J Med. 2003 Oct 30;349(18):1731-7. doi: 10.1056/NEJMra022471.
  21. Wierzbicki R, Prazanowski M, Michalska M, et al. Disorders in blood coagulation in humans occupationally exposed to mercuric vapors. J Trace Elem Exp Med. 2002;15:21–29. 
  22. Guallar E, Sanz-Gallardo MI, van't Veer P, Bode P, Aro A, Gómez-Aracena J, Kark JD, Riemersma RA, Martín-Moreno JM, Kok FJ; Heavy Metals and Myocardial Infarction Study Group. Mercury, fish oils, and the risk of myocardial infarction. N Engl J Med. 2002 Nov 28;347(22):1747-54. doi: 10.1056/NEJMoa020157. 
  23. Yoshizawa K, Rimm EB, Morris JS, Spate VL, Hsieh CC, Spiegelman D, Stampfer MJ, Willett WC. Mercury and the risk of coronary heart disease in men. N Engl J Med. 2002 Nov 28;347(22):1755-60. doi: 10.1056/NEJMoa021437.
  24. Moszczyński P. [Mercury and the risk of coronary heart disease]. Przegl Lek. 2006;63 Suppl 7:84-7. [Article in Polish]. 
  25. Boffetta P, Sällsten G, Garcia-Gómez M, Pompe-Kirn V, Zaridze D, Bulbulyan M, Caballero JD, Ceccarelli F, Kobal AB, Merler E. Mortality from cardiovascular diseases and exposure to inorganic mercury. Occup Environ Med. 2001 Jul;58(7):461-6. doi: 10.1136/oem.58.7.461. 
  26. García Gómez M, Boffetta P, Caballero Klink JD, Español S, Gómez Quintana J. Mortalidad por enfermedades cardiovasculares en los mineros de mercurio [Cardiovascular mortality in mercury miners]. Med Clin (Barc). 2007 May 26;128(20):766-71. Spanish. doi: 10.1157/13106327. 
  27. Eisele K, Lang PA, Kempe DS, Klarl BA, Niemöller O, Wieder T, Huber SM, Duranton C, Lang F. Stimulation of erythrocyte phosphatidylserine exposure by mercury ions. Toxicol Appl Pharmacol. 2006 Jan 1;210(1-2):116-22. doi: 10.1016/j.taap.2005.07.022.
  28. Chung SM, Bae ON, Lim KM, Noh JY, Lee MY, Jung YS, Chung JH. Lysophosphatidic acid induces thrombogenic activity through phosphatidylserine exposure and procoagulant microvesicle generation in human erythrocytes. Arterioscler Thromb Vasc Biol. 2007 Feb;27(2):414-21. doi: 10.1161/01.ATV.0000252898.48084.6a. 
  29. Mentzer WC Jr, Iarocci TA, Mohandas N, Lane PA, Smith B, Lazerson J, Hays T. Modulation of erythrocyte membrane mechanical stability by 2,3-diphosphoglycerate in the neonatal poikilocytosis/elliptocytosis syndrome. J Clin Invest. 1987 Mar;79(3):943-9. doi: 10.1172/JCI112905.
  30. Dhanapriya J, Gopalakrishnan N, Arun V, Dineshkumar T, Sakthirajan R, Balasubramaniyan T, Haris M. Acute kidney injury and disseminated intravascular coagulation due to mercuric chloride poisoning. Indian J Nephrol. 2016 May-Jun;26(3):206-8. doi: 10.4103/0971-4065.164230.
  31. Bai L, Peng X, Liu Y, Sun Y, Zheng L, Liu Z, Wan K, Wang J, Zhao J, Qiu Z. Association between acute severe mercury poisoning and multiple organ failure. Am J Transl Res. 2020 Aug 15;12(8):4347-4353.
  32. Lim KM, Kim S, Noh JY, Kim K, Jang WH, Bae ON, Chung SM, Chung JH. Low-level mercury can enhance procoagulant activity of erythrocytes: a new contributing factor for mercury-related thrombotic disease. Environ Health Perspect. 2010 Jul;118(7):928-35. doi: 10.1289/ehp.0901473. 

Download Article
Received April 6, 2022.
Accepted May 24, 2022.
©2022 International Medical Research and Development Corporation.