Clinical and Genetic Features of Uncontrolled, Complicated Arterial Hypertension in Hypertensive Patients of the Aral Sea Region

Kh. Kh. Ataniyazov, G. A. Khamidullaeva, G. Zh. Abdullaeva, A. A. Abdullaev, A. G. Kevorkov, D. Zakirova

 
International Journal of Biomedicine. 2022;12(3):360-366.
DOI: 10.21103/Article12(3)_OA2
Originally published September 5, 2022

Abstract: 

The purpose of this study was to assess the clinical and genetic features of the course of hypertension, complicated by a hypertensive crisis in the inhabitants of the Aral Sea region.
Methods and Results: The study included 132 patients (52 men and 80 women) with AH who applied at least 5 times (4.9±2.4) during 1 year to the Nukus Emergency Medical Care Center with a diagnosis of “Uncomplicated hypertensive crisis.” The mean age of the patients was 57.2±11.6 years, the mean duration of AH ‒ 8.85±3.4 years. The control group consisted of 50 healthy people (mean age of 52.7±6.4 years), women and men in equal proportions. A cardio Hypertension Panel of multiplex RT-PCR assay was used to detect 4 SNP [ADD1 rs4961 (G460T), GNB3 rs5443 (C825T), AGT rs4762 (C521T), and AGT rs699 (T704C)]. To assess the strength of the association between a genetic marker and AH, measured by the OR, we used multiplicative and additive models.
According to the results of office BP measurement, the average SBP corresponded to AH Grade 3 (200.8±22.6 mmHg), and DBP corresponded to AH Grade 2 (105.4±7.62 mmHg). All AH patients, regardless of gender, were diagnosed with left ventricular hypertrophy and increased carotid intima-media thickness. Microalbuminuria was detected in 89 (67.4%) patients, proteinuria in 39 (29.6%) patients. Among AH patients, 88% had a high salt taste sensitivity threshold (STST) and 12% had a medium STST (χ²=269.455, P=0.0001). Analysis of the multiplicative and additive models for the AGT rs699 (Т704С) SNP showed a significant risk of AH with the carriage of the T allele (OR=3.70, 95% CI: 1.88-7.26, P=0.000) and the homozygous TT genotype and heterozygous CT genotype (OR=12.55, 95% CI: 0.72-218.80, P=0.000, and OR=2.67, 95% CI: 1.24-5.74, P=0.000, respectively). At the same time, the carriage of the C allele and CC genotype may be protective against the development of AH in individuals of the Aral Sea region. Analyzing the additive models, we also found a significant risk of AH with the carriage of the homozygous CC genotype of the AGT rs4762 (C521T) SNP (OR=5.92, 95% CI: 2.78-12.63, P=0.000). For the ADD1 rs4961 (G460Т) SNP and the GNB3 rs5443 (C825T) SNP, we did not find associations with the risk of AH. The presence of ethnic differences in the prevalence and associative links of AH candidate genes with the development of the salt-sensitivity phenotype require further extended searches in this direction, especially in the Aral Sea region.

Keywords: 
arterial hypertension • salt sensitivity • Aral Sea • candidate genes
References: 
  1. Wæhler TA, Dietrichs ES. [The vanishing Aral Sea: health consequences of an environmental disaster]. Tidsskr Nor Laegeforen. 2017 Oct 2;137(18). doi: 10.4045/tidsskr.17.0597. PMID: 28972331. [Article in Norwegian].
  2. Alikhanov B (2010) Environmental challenges of the Aral Sea and the Aral Sea area. International Meeting Report., Tashkent, 2010: 5–27
  3. Munroe PB, Barnes MR, Caulfield MJ. Advances in blood pressure genomics. Circ Res. 2013 May 10;112(10):1365-79. doi: 10.1161/CIRCRESAHA.112.300387. PMID: 23661711.
  4. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al.; ESC Scientific Document Group. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018 Sep 1;39(33):3021-3104. doi: 10.1093/eurheartj/ehy339. Erratum in: Eur Heart J. 2019 Feb 1;40(5):475. PMID: 30165516.
  5. Henkin RI. Salt taste in patients with essential hypertension and with hypertension due to primary hyperaldosteronism. J Chronic Dis. 1974 Jul;27(4):235-44. doi: 10.1016/0021-9681(74)90048-4. PMID: 4843255.
  6. Martorell-Marugan J, Toro-Dominguez D, Alarcon-Riquelme ME, Carmona-Saez P. MetaGenyo: a web tool for meta-analysis of genetic association studies. BMC Bioinformatics. 2017 Dec 16;18(1):563. doi: 10.1186/s12859-017-1990-4. PMID: 29246109; PMCID: PMC5732412.
  7. Salanti G, Amountza G, Ntzani EE, Ioannidis JP. Hardy-Weinberg equilibrium in genetic association studies: an empirical evaluation of reporting, deviations, and power. Eur J Hum Genet. 2005 Jul;13(7):840-8. doi: 10.1038/sj.ejhg.5201410. PMID: 15827565.
  8. Hosking L, Lumsden S, Lewis K, Yeo A, McCarthy L, Bansal A, Riley J, Purvis I, Xu CF. Detection of genotyping errors by Hardy-Weinberg equilibrium testing. Eur J Hum Genet. 2004 May;12(5):395-9. doi: 10.1038/sj.ejhg.5201164. PMID: 14872201.
  9. Zhang W, Zhang Z, Li X, Li Q. Fitting Proportional Odds Model to Case-Control data with Incorporating Hardy-Weinberg Equilibrium. Sci Rep. 2015 Nov 26;5:17286. doi: 10.1038/srep17286. PMID: 26607176; PMCID: PMC4660314.
  10. Schaid DJ, Batzler AJ, Jenkins GD, Hildebrandt MA. Exact tests of Hardy-Weinberg equilibrium and homogeneity of disequilibrium across strata. Am J Hum Genet. 2006 Dec;79(6):1071-80. doi: 10.1086/510257. Epub 2006 Nov 3. PMID: 17186465; PMCID: PMC1698709.
  11. Lewis CM. Genetic association studies: design, analysis and interpretation. Brief Bioinform. 2002 Jun;3(2):146-53. doi: 10.1093/bib/3.2.146. PMID: 12139434.
  12. Clarke GM, Anderson CA, Pettersson FH, Cardon LR, Morris AP, Zondervan KT. Basic statistical analysis in genetic case-control studies. Nat Protoc. 2011 Feb;6(2):121-33. doi: 10.1038/nprot.2010.182. Epub 2011 Feb 3. PMID: 21293453; PMCID: PMC3154648.
  13. Cochran WG. Some methods for strengthening the common chi-square tests. Biometrics. 1954;10:417-451
  14. Armitage P. Tests for linear trends in proportions and frequencies. Biometrics. 1955;11:375-386.
  15. Zheng G, Freidlin B, Gastwirth JL. Robust genomic control for association studies. Am J Hum Genet. 2006 Feb;78(2):350-6. doi: 10.1086/500054. Epub 2005 Dec 22. PMID: 16400614; PMCID: PMC1380242.
  16. Terent’ev VP, Batyushkin MM, Shlyk SV, Mikhailov NV. [Population genetic study of the threshold of taste sensitivity to table salt]. Russian Journal of Cardiology. 1999;(6):30-32.[Article in Russian].
  17. Khamidullaeva GA, Nagai AV, Abdullaeva GZh. [The significance of high salt intake in the pathogenesis of arterial hypertension]. Cardiology of Uzbekistan. 2017;(2):126. [Article in Russian].
  18. Armando I, Villar VA, Jose PA. Genomics and Pharmacogenomics of Salt-sensitive Hypertension. Curr Hypertens Rev. 2015;11(1):49-56. PMID: 26028245.
  19. Hollenberg NK, Martinez G, McCullough M, Meinking T, Passan D, Preston M, Rivera A, Taplin D, Vicaria-Clement M. Aging, acculturation, salt intake, and hypertension in the Kuna of Panama. Hypertension. 1997 Jan;29(1 Pt 2):171-6. doi: 10.1161/01.hyp.29.1.171. PMID: 9039098.
  20. Gu D, Rice T, Wang S, Yang W, Gu C, Chen CS, Hixson JE, Jaquish CE, Yao ZJ, Liu DP, Rao DC, He J. Heritability of blood pressure responses to dietary sodium and potassium intake in a Chinese population. Hypertension. 2007 Jul;50(1):116-22. doi: 10.1161/HYPERTENSIONAHA.107.088310. Epub 2007 May 7. PMID: 17485599; PMCID: PMC2258208.
  21. Miller JZ, Weinberger MH, Christian JC, Daugherty SA. Familial resemblance in the blood pressure response to sodium restriction. Am J Epidemiol. 1987 Nov;126(5):822-30. doi: 10.1093/oxfordjournals.aje.a114719. PMID: 3661530.
  22. Svetkey LP, McKeown SP, Wilson AF. Heritability of salt sensitivity in black Americans. Hypertension. 1996 Nov;28(5):854-8. doi: 10.1161/01.hyp.28.5.854. PMID: 8901834.
  23. Kelly TN, He J. Genomic epidemiology of blood pressure salt sensitivity. J Hypertens. 2012 May;30(5):861-73. doi: 10.1097/HJH.0b013e3283524949. PMID: 22495127.
  24. Strazzullo P, Galletti F. Genetics of salt-sensitive hypertension. Curr Hypertens Rep. 2007 Mar;9(1):25-32. doi: 10.1007/s11906-007-0006-6. PMID: 17362668.
  25. Norat T, Bowman R, Luben R, Welch A, Khaw KT, Wareham N, Bingham S. Blood pressure and interactions between the angiotensin polymorphism AGT M235T and sodium intake: a cross-sectional population study. Am J Clin Nutr. 2008 Aug;88(2):392-7. doi: 10.1093/ajcn/88.2.392. PMID: 18689375.
  26. Gu D, Kelly TN, Hixson JE, Chen J, Liu D, Chen JC, Rao DC, Mu J, Ma J, Jaquish CE, Rice TK, Gu C, Hamm LL, Whelton PK, He J. Genetic variants in the renin-angiotensin-aldosterone system and salt sensitivity of blood pressure. J Hypertens. 2010 Jun;28(6):1210-20. PMID: 20486282; PMCID: PMC2884148.
  27. Iwai N, Kajimoto K, Tomoike H, Takashima N. Polymorphism of CYP11B2 determines salt sensitivity in Japanese. Hypertension. 2007 Apr;49(4):825-31. doi: 10.1161/01.HYP.0000258796.52134.26. Epub 2007 Feb 12. PMID: 17296872.
  28. Pojoga L, Kolatkar NS, Williams JS, Perlstein TS, Jeunemaitre X, Brown NJ, Hopkins PN, Raby BA, Williams GH. Beta-2 adrenergic receptor diplotype defines a subset of salt-sensitive hypertension. Hypertension. 2006 Nov;48(5):892-900. doi: 10.1161/01.HYP.0000244688.45472.95. Epub 2006 Oct 2. PMID: 17015767.
  29. Wang R, Zhong B, Liu Y, Wang C. Association between alpha-adducin gene polymorphism (Gly460Trp) and genetic predisposition to salt sensitivity: a meta-analysis. J Appl Genet. 2010;51(1):87-94. doi: 10.1007/BF03195715. PMID: 20145305.
  30. Manunta P, Lavery G, Lanzani C, Braund PS, Simonini M, Bodycote C, Zagato L, Delli Carpini S, Tantardini C, Brioni E, Bianchi G, Samani NJ. Physiological interaction between alpha-adducin and WNK1-NEDD4L pathways on sodium-related blood pressure regulation. Hypertension. 2008 Aug;52(2):366-72. doi: 10.1161/HYPERTENSIONAHA.108.113977. Epub 2008 Jun 30. PMID: 18591455.
  31. Nagay A, Khamidullaeva GA, Abdullaeva GJ. Relationship salt sensitivity and C825T polymorphism of GNB3 gene in patients with essensial hypertension. Journal of Hypertension. 2012;30( e-Supplement A): е531.
  32. Liu K, Liu J, Huang Y, Liu Y, Lou Y, Wang Z, Zhang H, Yan S, Li Z, Wen S. Alpha-adducin Gly460Trp polymorphism and hypertension risk: a meta-analysis of 22 studies including 14303 cases and 15961 controls. PLoS One. 2010 Sep 28;5(9):e13057. doi: 10.1371/journal.pone.0013057. PMID: 20927398; PMCID: PMC2946925.
  33. Martín DN, Andreu EP, Ramírez Lorca R, García-Junco PS, Vallejo Maroto I, Santos RA, Miranda Guisado ML, Grijalvo OM, Ortiz JV, Carneado de la Fuente J. G-protein beta-3 subunit gene C825 T polymorphism: influence on plasma sodium and potassium concentrations in essential hypertensive patients. Life Sci. 2005 Oct 21;77(23):2879-86. doi: 10.1016/j.lfs.2005.02.030. PMID: 16002097.
  34. Abdullaeva G.Zh. Clinical and pharmacogenetic aspects of salt-sensitive arterial hypertension, taking into account the genes regulating water-salt metabolism. Abstract of ScD Thesis. Tashkent, 2018
  35. Hunt SC, Cook NR, Oberman A, Cutler JA, Hennekens CH, Allender PS, Walker WG, Whelton PK, Williams RR. Angiotensinogen genotype, sodium reduction, weight loss, and prevention of hypertension: trials of hypertension prevention, phase II. Hypertension. 1998 Sep;32(3):393-401. doi: 10.1161/01.hyp.32.3.393. PMID: 9740601.

Download Article
Received July 3, 2022.
Accepted August 4, 2022.
©2022 International Medical Research and Development Corporation.