Response of Human Malignant Glioma Cells to Asymmetric Bipolar Electrical Impulses

Amr A. Abd-Elghany, A. M. M. Yousef

International Journal of Biomedicine. 2022;12(4):560-566.
DOI: 10.21103/Article12(4)_OA6
Originally published December 5, 2022


Electric and electromagnetic pulses have been shown to enhance the endocytosis rate, with all-or-nothing responses beyond a field strength threshold and linear responses as a function of field strength and treatment duration utilizing bipolar symmetrical and monopolar pulses, respectively. Malignant glioma (MG) is resistant to chemotherapy. The present study looked for a new electrical impulse that can aid electrochemotherapy to deliver anticancer drugs while using less electrical energy. Bipolar asymmetric electric pulses were applied to U251MG cells suspended in physiologically conductive media in the presence of molecular probes, including Bleomycin. The delivered electric pulses with a pulse duration range of 180-500 µs and a frequency range of 100-400 Hz had a low field intensity ranging from 1.5 V/cm to 7.3 V/cm. Spectrophotometric and spectrofluorometric measurements were used to investigate the impact of these variables on cancer cell survival and the molecular probe uptake induced by the electric pulses. An all-or-nothing response was observed above a specified threshold of electric field intensity of 4 V/cm. This threshold was unaffected by changes in repetition frequency or pulse duration. It was not a temperature effect that caused the molecular probe uptake to increase. When bipolar asymmetric electric pulses were applied just before electroporation, the effectiveness of the cytotoxic impact of bleomycin was increased from 80%, when employing electroporation pulses alone, to 100%.

electroendocytosis • asymmetric bipolar electrical impulses • receptor-mediated endocytosis • spectrofluorometry • U251MG cells

1. Pereyra AS, Mykhaylyk O, Lockhart EF, Taylor JR, Delbono O, Goya RG, Plank C, Hereñu CB. Magnetofection Enhances Adenoviral Vector-based Gene Delivery in Skeletal Muscle Cells. J Nanomed Nanotechnol. 2016 Apr;7(2):364. doi: 10.4172/2157-7439.1000364.
2. Vigata M, Meinert C, Hutmacher DW, Bock N. Hydrogels as Drug Delivery Systems: A Review of Current Characterization and Evaluation Techniques. Pharmaceutics. 2020 Dec 7;12(12):1188. doi: 10.3390/pharmaceutics12121188.
3. Sundaram J, Mellein BR, Mitragotri S. An experimental and theoretical analysis of ultrasound-induced permeabilization of cell membranes. Biophys J. 2003 May;84(5):3087-101. doi: 10.1016/S0006-3495(03)70034-4.
4. Ita K. Perspectives on Transdermal Electroporation. Pharmaceutics. 2016 Mar 17;8(1):9. doi: 10.3390/pharmaceutics8010009.
5. Draga M, Pröls F, Scaal M. Double electroporation in two adjacent tissues in chicken embryos. Dev Dyn. 2018 Nov;247(11):1211-1216. doi: 10.1002/dvdy.24674.
6. Kotnik T, Rems L, Tarek M, Miklavčič D. Membrane Electroporation and Electropermeabilization: Mechanisms and Models. Annu Rev Biophys. 2019 May 6;48:63-91. doi: 10.1146/annurev-biophys-052118-115451.
7. Ben-Dov N, Rozman Grinberg I, Korenstein R. Electroendocytosis is driven by the binding of electrochemically produced protons to the cell's surface. PLoS One. 2012;7(11):e50299. doi: 10.1371/journal.pone.0050299.
8. Lin R, Chang DC, Lee YK. Single-cell electroendocytosis on a micro chip using in situ fluorescence microscopy. Biomed Microdevices. 2011 Dec;13(6):1063-73. doi: 10.1007/s10544-011-9576-9.
9. Shawki MM, Farid A. Low electric field parameters required to induce death of cancer cells. Electromagn Biol Med. 2014 Jun;33(2):159-63. doi: 10.3109/15368378.2013.800105.
10. Barbul A, Antov Y, Rosenberg Y, Korenstein R. Enhanced delivery of macromolecules into cells by electroendocytosis. Methods Mol Biol. 2009;480:141-50. doi: 10.1007/978-1-59745-429-2_10.
11. Antov Y, Barbul A, Mantsur H, Korenstein R. Electroendocytosis: exposure of cells to pulsed low electric fields enhances adsorption and uptake of macromolecules. Biophys J. 2005 Mar;88(3):2206-23. doi: 10.1529/biophysj.104.051268.
12. Mahrour N, Pologea-Moraru R, Moisescu MG, Orlowski S, Levêque P, Mir LM. In vitro increase of the fluid-phase endocytosis induced by pulsed radiofrequency electromagnetic fields: importance of the electric field component. Biochim Biophys Acta. 2005 Feb 1;1668(1):126-37. doi: 10.1016/j.bbamem.2004.11.015.
13. Antov Y, Barbul A, Korenstein R. Electroendocytosis: stimulation of adsorptive and fluid-phase uptake by pulsed low electric fields. Exp Cell Res. 2004 Jul 15;297(2):348-62. doi: 10.1016/j.yexcr.2004.03.027.
14. Marshall M, Lund PE, Barg S. Molecular Mechanisms of V-SNARE Function in Secretory Granule Exocytosis. Biophysical Journal. 2017, 112 (3), 395a.
15. Abd-Elghany AA. Incorporation of electroendocytosis and nanosecond pulsed electric field in electrochemotherapy of breast cancer cells. Electromagn Biol Med. 2022 Jan 2;41(1):25-34. doi: 10.1080/15368378.2021.
16. Hjouj M, Last D, Guez D, Daniels D, Sharabi S, Lavee J, Rubinsky B, Mardor Y. MRI study on reversible and irreversible electroporation induced blood brain barrier disruption. PLoS One. 2012;7(8):e42817. doi: 10.1371/journal.pone.0042817.
17. Sharabi S, Last D, Guez D, Daniels D, Hjouj MI, Salomon S, Maor E, Mardor Y. Dynamic effects of point source electroporation on the rat brain tissue. Bioelectrochemistry. 2014 Oct;99:30-9. doi: 10.1016/j.bioelechem.2014.06.001.
18. Garcia PA, Rossmeisl JH Jr, Robertson JL, Olson JD, Johnson AJ, Ellis TL, Davalos RV. 7.0-T magnetic resonance imaging characterization of acute blood-brain-barrier disruption achieved with intracranial irreversible electroporation. PLoS One. 2012;7(11):e50482. doi: 10.1371/journal.pone.0050482.
19. Sharabi S, Guez D, Daniels D, Cooper I, Atrakchi D, Liraz-Zaltsman S, Last D, Mardor Y. The application of point source electroporation and chemotherapy for the treatment of glioma: a randomized controlled rat study. Sci Rep. 2020 Feb 7;10(1):2178. doi: 10.1038/s41598-020-59152-7.
20. Poo M. In situ electrophoresis of membrane components. Annu Rev Biophys Bioeng. 1981;10:245-76. doi: 10.1146/
21. Poo M, Robinson KR. Electrophoresis of concanavalin A receptors along embryonic muscle cell membrane. Nature. 1977 Feb 17;265(5595):602-5. doi: 10.1038/265602a0.
22. Poo M, Lam JW, Orida N, Chao AW. Electrophoresis and diffusion in the plane of the cell membrane. Biophys J. 1979 Apr;26(1):1-21. doi: 10.1016/S0006-3495(79)85231-5.
23. McLaughlin S, Poo MM. The role of electro-osmosis in the electric-field-induced movement of charged macromolecules on the surfaces of cells. Biophys J. 1981 Apr;34(1):85-93. doi: 10.1016/S0006-3495(81)84838-2.
24. Sowers AE, Hackenbrock CR. Rate of lateral diffusion of intramembrane particles: measurement by electrophoretic displacement and rerandomization. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6246-50. doi: 10.1073/pnas.78.10.6246.
25. SCHWAN HP. Electrical properties of tissue and cell suspensions. Adv Biol Med Phys. 1957;5:147-209. doi: 10.1016/b978-1-4832-3111-2.50008-0.
26. Jäkel S, Dimou L. Glial Cells and Their Function in the Adult Brain: A Journey through the History of Their Ablation. Front Cell Neurosci. 2017 Feb 13;11:24. doi: 10.3389/fncel.2017.00024.
27. Pron G, Belehradek J Jr, Mir LM. Identification of a plasma membrane protein that specifically binds bleomycin. Biochem Biophys Res Commun. 1993 Jul 15;194(1):333-7. doi: 10.1006/bbrc.1993.1824.
28. Pron G, Mahrour N, Orlowski S, Tounekti O, Poddevin B, Belehradek J Jr, Mir LM. Internalisation of the bleomycin molecules responsible for bleomycin toxicity: a receptor-mediated endocytosis mechanism. Biochem Pharmacol. 1999 Jan 1;57(1):45-56. doi: 10.1016/s0006-2952(98)00282-2.
29. Prausnitz MR, Lau BS, Milano CD, Conner S, Langer R, Weaver JC. A quantitative study of electroporation showing a plateau in net molecular transport. Biophys J. 1993 Jul;65(1):414-22. doi: 10.1016/S0006-3495(93)81081-6.
30. Miklavčič D, Mali B, Kos B, Heller R, Serša G. Electrochemotherapy: from the drawing board into medical practice. Biomed Eng Online. 2014 Mar 12;13(1):29. doi: 10.1186/1475-925X-13-29.

Download Article
Received October 31, 2022.
Accepted December 2, 2022.
©2022 International Medical Research and Development Corporation.