Shape and Volume Restoring Phenomena in Human Erythrocyte Suspension under Low Ion Strength Conditions

Sergey V. Rudenko, PhD¹*, Igor A. Zupanets, PhD, ScD²

¹Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of the Ukraine, Kharkov, Ukraine,²National University of Pharmacy, Kharkov, Ukraine

* Corresponding author: Sergey V. Rudenko, Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of the Ukraine.23 Pereyaslavskaya Str., 61015, Kharkov, Ukraine.Tel.: +38 057 373-4143; Fax: +38 057 373-3084; e-mail:

Published: March 25, 2013


In this study, the earlier used method to measure the dynamics of shape changes in red blood cells (RBCs), based on an analysis of light fluctuations in the suspension, was modified to allow for the simultaneous recording of cell volume changes after appropriate recalculation of the raw absorbance and shape index data. With this improved methodology, we investigated the morphological and volume responses triggered by cell environment changes. In a low ionic strength medium (LIS), the characteristic triphasic shape changes (morphological response, MR) were accompanied with a gradual shrinking of the cells without any re-swelling phase. The addition of hyperosmotic NaCl during the terminal MR phase restored the discoid RBC shape inducing cell swelling resembling regulatory volume increase. The cell volume was greater than that before salt addition; however, it was lower than the initial isotonic cell volume. This re-swelling phase was inhibited by the external DIDS, acetozolamide and bicarbonate, and was slightly dependent upon pH ranging from 5 to 7.2. The analysis shows that chloride-induced re-swelling cannot be directly explained by the reversion of OH- or HCO3-  gradients which drive the Cl- inside the cells against the concentration gradient, and indicates the significant role of the external bicarbonate ions in shape and volume responses in LIS.

red blood cells; morphological response; low ionic strength; DIDS; aluminum.
  1. Bennekou P, Barksmann TL, Christophersen P, Kristensen BI. The human red cell voltage-dependent cation channel. Part III: Distribution homogeneity and pH dependence.  Blood Cells Mol Dis 2006; 36:10-14.
  2. Bernhardt I,  Donath E, Glaser R. Influence of surface charge and transmembrane potential on rubidium-86 efflux of human red blood cells.  J Membr Biol 1984; 78: 249-255.
  3.  Bisognano JD, Dix JA, Pratap PR, Novak TS, Freedman JC. Proton (or hydroxide) fluxes and the biphasic osmotic response of human red blood cells.  J Gen Physiol 1993; 102: 99-123.
  4.  Jones GS, Knauf PA. Mechanism of the increase in cation permeability of human erythrocytes in low-chloride media. Involvement of the anion transport protein capnophorin.  J Gen Physiol 1985; 86: 721-738.
  5. Sambasivarao D, Rao NM, Sitaramam V. Anomalous permeability and stability characteristics of erythrocytes in non-electrolyte media.  Biochim Biophys Acta 1983; 857: 48-60.
  6.  Zeidler RB, Kim HD. Effects of low electrolyte media on salt loss and hemolysis of mammalian red blood cells.  J Cell Physiol 1979; 100:551-561.
  7. Glaser R, Fujii T, Muller P, Tamura E, Herrmann A. Erythrocyte shape dynamics: influence of electrolyte conditions and membrane potential.  Biomed Biochim Acta 1987; 46:327-333.
  8. Rudenko SV. Erythrocyte morphological states, phases, transitions and trajectories.  Biochim Biophys Acta 2010; 1798:1767-1778.
  9. Bennekou P, Kristensen BI, Christophersen P. The human red cell voltage-regulated cation channel. The interplay with the chloride conductance, the Ca(2+)-activated K(+) channel and the Ca(2+) pump.  J Membr Biol 2003; 195:1-8.
  10. Bennekou P,  Barksmann TL, Jensen LR, Kristensen BI,  Christophersen P. Voltage activation and hysteresis of the non-selective voltage-dependent channel in the intact human red cell.  Bioelectrochemistry 2004; 62:181-185.
  11. Bernhardt I,  Bogdanova AY, Kummerow D, Kiessling K, Hamann J, Ellory JC. Characterization of the K+(Na+)/H+ monovalent cation exchanger in the human red blood cell membrane: effects of transport inhibitors.  Gen Physiol Biophys 1999; 18: 119-137.
  12. Bernhardt I, Kummerow D, Weiss E.  K+(Na+)/H+ exchange in human erythrocytes activated under low ionic strength conditions.  Blood Cells Mol Dis 2001; 27:108-111.
  13. Kummerow D, Hamann J, Browning JA, Wilkins R,  Ellory JC, Bernhardt I. Variations of intracellular pH in human erythrocytes via K(+)(Na(+))/H(+) exchange under low ionic strength conditions.  J Membr Biol 2000; 176:207-216.
  14. Rudenko SV. Characterization of morphological response of red cells in a sucrose solution.  Blood Cells Mol Dis 2009; 42:252-261.
  15. Rudenko SV, Crowe JH, Tablin F. Determination of time-dependent shape changes in red blood cells.  Biochemistry (Mosc.) 1998; 63:1385-1394.
  16. Gimsa J, Schnelle T, Zechel G, Glaser R. Dielectric spectroscopy of human erythrocytes: investigations under the influence of nystatin .  Biophys J 1994; 66:1244-1253.
  17. Dise CA, Goodman DB. The relationship between valinomycin-induced alterations in membrane phospholipid fatty acid turnover, membrane potential, and cell volume in the human erythrocyte.  J Biol Chem 1985; 260:2869-2874.
  18.  Culliford SJ, Bernhardt I, Ellory JC. Activation of a novel organic solute transporter in mammalian red blood cells.  J Physiol 1995; 489 (Pt 3):755-765.
  19. Barksmann TL, Kristensen BI, Christophersen P,  Bennekou P. Pharmacology of the human red cell voltage-dependent cation channel; Part I. Activation by clotrimazole and analogues.  Blood Cells Mol Dis 2004; 32:384-388.
  20. Lew VL, Bookchin RM. Volume, pH, and ion-content regulation in human red cells: analysis of transient behavior with an integrated model.  J Membr Biol 1986; 92:57-74.
  21.  Jacobs MH, Stewart DR. The role of carbonic anhydrase in certain ionic exchanges involving the erythrocyte.  J Gen Physiol 1942; 25:539-552.
  22.  Alvarez BV, Vilas GL, Casey JR. Metabolon disruption: a mechanism that regulates bicarbonate transport.  EMBO J 2005; 24:2499-2511.
  23. Morgan PE,  Supuran CT,  Casey JR. Carbonic anhydrase inhibitors that directly inhibit anion transport by the human Cl-/HCO3- exchanger, AE1.  Mol Membr Biol 2004; 21: 423-433.
  24.  McMurtrie HL, Cleary HJ, Alvarez BV, Loiselle FB, Sterling D, Morgan PE, et al. The bicarbonate transport metabolon.  J Enzyme Inhib Med Chem 2004; 19: 231-236.
  25. Sterling D, Reithmeier RA, Casey JR. Carbonic anhydrase: in the driver's seat for bicarbonate transport.  JOP 2001; 2:165-170.
  26. Swietach P, Tiffert T, Mauritz JM, Seear R,  Esposito A,  Kaminski CF, et al. Hydrogen ion dynamics in human red blood cells.  J Physiol 2010; 588: 4995-5014.
  27.  Boron WF. Evaluating the role of carbonic anhydrases in the transport of HCO3--related species.  Biochim Biophys Acta 2010; 1804:410-421.
  28. Ponder E. Hemolysis and related phenomena. Grune and Stratton, Inc New York. 1948.
  29. Heubusch P, Jung CY, Green FA. The osmotic response of human erythrocytes and the membrane cytoskeleton.  J Cell Physiol 1985; 122: 266-272.
  30. Cook JS. Nonsolvent water in human erythrocytes.  J Gen Physiol 1967; 50:1311-1325.
  31. LeFevre PG. The osmotically functional water content of the human erythrocyte.  J Gen Physiol 1964; 47:585-603.
  32. Rudenko SV, Budilova JV. Peculiarities of the osmotic response in dehydrated erythrocytes.  Membr Cell Biol 1997; 10:613-621.

The fully formatted PDF version is available.

Download Article

Int J Biomed. 2013; 3(1):32-40. © 2013 International Medical Research and Development Corporation. All rights reserved.