Role of mutations in NOD2/CARD15, ATG16L1, AND IRGM in the Pathogenesis of Crohn’s disease

Igor’ V. Maev, PhD, ScD; Dmitry N. Andreev

Moscow State University of Medicine and Dentistry named after A.I. Evdokimov; Moscow, Russian Federation

*Corresponding author: Dmitry N. Andreev, Moscow State University of Medicine and Dentistry named after A.I. Evdokimov. 20/1 Delegatskaya street, Moscow, 127473, Russian Federation. 
E-mail: dna-mit8@mail.ru

Published: March 25, 2014.

Abstract: 

This review article summarizes the issues concerning the pathogenesis of Crohn’s disease (CD) based on the results of large-scale genome-wide association studies. The role of defects in innate immunity associated with mutations in specific genes such as those regulating bacterial pattern recognition (NOD2/CARD15) and autophagy/xenophagy (ATG16L1 and IRGM) in CD is also discussed. Basic pathogenetic hypotheses that aim to interpret the association between specific gene mutations and CD development are presented.

Keywords: 
Crohn’s disease; innate immunity; autophagy; xenophagy; microbiota; NOD2/CARD15; ATG16L1; IRGM.
References: 
  1. Vorob'ev GI, Khalif IL. Unspecific inflammatory bowel diseases. Moscow: Miklosh, 2008.
  2. Sands BE, Siegel CA. Crohn's disease. In: Feldman M, Friedman LS, Brandt LJ, eds. Sleisenger & Fordtran's Gastrointestinal and Liver Disease. 9th ed. Philadelphia, Pa: Saunders Elsevier; 2010: chap 111.
  3. Burisch J, Munkholm P. Inflammatory bowel disease epidemiology. Curr Opin Gastroenterol 2013; 29 (4): 357-62.
  4. Kappelman MD, Rifas-Shiman SL, Kleinman K, Ollendorf D, Bousvaros A, Grand RJ, et al. The prevalence and geographic distribution of Crohn's disease and ulcerative colitis in the United States.  Clin Gastroenterol Hepatol 2007; 5:1424-9.
  5. Geremia A, Biancheri P, Allan P, Corazza GR, Di Sabatino A. Innate and adaptive immunity in inflammatory bowel disease. Autoimmun Rev 2014; 13(1):3-10.
  6. Baumgart DC, Sandborn WJ. Crohn's disease. Lancet 2012; 380 (9853): 1590-1605.
  7. Peeters M, Nevens H, Baert F, Hiele M, de Meyer AM, Vlietinck R, et al. Familial aggregation in Crohn's disease: Increased age-adjusted risk and concordance in clinical characteristics.  Gastroenterology 1996; 111:597-603.
  8. Dorn SD, Abad JF, Panagopoulos G, Korelitz BI. Clinical characteristics of familial versus sporadic Crohn's disease using the Vienna Classification. Inflamm Bowel Dis 2004; 10: 201-206.
  9. Yan B, Panaccione R, Sutherland L. I am Jewish: what is my risk of developing Crohn's disease? Inflamm Bowel Dis 2008; 14 Suppl. 2:S26-7.
  10. Xavier RJ, Rioux JD. Genome-wide association studies: A new window into immune-mediated diseases. Nature Rev Immunol 2008; 8:631-43.
  11. Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat Genet 2008; 40:955-62.
  12. Lee YH, Song GG. Pathway analysis of a genome-wide association study of ileal Crohn's disease. DNA Cell Biol 2012; 31(10):1549-54.
  13. Tsianos EV, Katsanos KH, Tsianos VE. Role of genetics in the diagnosis and prognosis of Crohn's disease. World J Gastroenterol 2012; 18(2):105-18.
  14. Hugot JP, Chamaillard M, Zouali H, Lesage S, Cézard JP, Belaiche J, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 2001; 411:599-603.
  15. Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease.  Nature 2001; 411:603-6.
  16. Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G, et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 2003; 278(11):8869-72.
  17. Grimes CL, Ariyananda Lde Z, Melnyk JE, O'Shea EK. The innate immune protein Nod2 binds directly to MDP, a bacterial cell wall fragment. J Am Chem Soc 2012; 134(33):13535-7.
  18. Lala S, Ogura Y, Osborne C, Hor SY, Bromfield A, Davies S, et al. Crohn's disease and the NOD2 gene: A role for paneth cells.  Gastroenterology 2003; 125:47-57.
  19. Ayabe T, Satchell DP, Wilson CL, Parks WC, Selsted ME, Ouellette AJ. Secretion of microbicidal alpha-defensins by intestinal Paneth cells in response to bacteria. Nat Immunol 2000; 1:113–118
  20. Ogura Y, Inohara N, Benito A, Chen FF, Yamaoka S, Nunez G. Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB. J Biol Chem 2001; 276(7):4812-8.
  21. Tattoli I, Travassos LH, Carneiro LA, Magalhaes JG, Girardin SE. The Nodosome: Nod1 and Nod2 control bacterial infections and inflammation. Semin Immunopathol 2007; 29(3):289-301.
  22. Lécine P, Esmiol S, Métais JY, Nicoletti C, Nourry C, McDonald C, et al. The NOD2-RICK complex signals from the plasma membrane. J Biol Chem 2007; 282(20):15197-207.
  23. Lesage S, Zouali H, Cézard JP, Colombel JF, Belaiche J, Almer S, et al. CARD15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease. Am J Hum Genet 2002; 70:845–57.
  24. Yazdanyar S, Weischer M, Nordestgaard BG. Genotyping for NOD2 genetic variants and crohn disease: a metaanalysis. Clin Chem 2009; 55(11):1950-7.
  25. Yamamoto S, Ma X. Role of Nod2 in the development of Crohn's disease. Microbes Infect 2009; 11(12): 912-918.
  26. Maeda S, Hsu LC, Liu H, Bankston LA, Iimura M, Kagnoff MF, et al. Nod2 mutation in Crohn's disease potentiates NF-kappaB activity and IL-1beta processing. Science 2005; 307(5710):734-8.
  27. Vermeire S. Review article: genetic susceptibility and application of genetic testing in clinical management of inflammatory bowel disease. Aliment Pharmacol Ther 2006; 24 Suppl 3:2-10.
  28. Yang Z, Fuss IJ, Watanabe T, Asano N, Davey MP, Rosenbaum JT, et al. NOD2 transgenic mice exhibit enhanced MDP-mediated down-regulation of TLR2 responses and resistance to colitis induction. Gastroenterology 2007; 133(5), 1510–21.
  29. Watanabe T, Kitani A, Murray PJ, Strober W. NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses. Nat Immunol 2004; 5(8):800-8.
  30. Wehkamp J, Salzman NH, Porter E, Nuding S, Weichenthal M, Petras RE, et al. Reduced paneth cell α-defensins in ileal Crohn's disease. Proc. Natl Acad Sci USA 2005; 102(50), 18129–18134.
  31. Wehkamp J, Harder J, Weichenthal M, Schwab M, Schäffeler E, Schlee M, et al. NOD2 (CARD15) mutations in Crohn's disease are associated with diminished mucosal alpha-defensin expression. Gut 2004; 53(11):1658-64.
  32. Biswas A, Liu YJ, Hao L, Mizoguchi A, Salzman NH, Bevins CL, et al. Induction and rescue of Nod2-dependent Th1-driven granulomatous inflammation of the ileum. Proc Natl Acad Sci USA 2010; 107(33):14739-44.
  33. Strober W, Watanabe T. NOD2, an intracellular innate immune sensor involved in host defense and Crohn's disease. Mucosal Immunol 2011; 4(5):484-95.
  34. Abreu MT, Taylor KD, Lin YC, Hang T, Gaiennie J, Landers CJ, et al. Mutations in NOD2 are associated with fibrostenosing disease in patients with Crohn's disease.  Gastroenterology 2002; 123:679-88.
  35. Cuthbert AP, Fisher SA, Mirza MM, King K, Hampe J, Croucher PJ, et al. The contribution of NOD2 gene mutations to the risk and site of disease in inflammatory bowel disease.  Gastroenterology 2002; 122:867-74.
  36. Hampe J, Grebe J, Nikolaus S, Solberg C, Croucher PJ, Mascheretti S, et al. Association of NOD2 (CARD 15) genotype with clinical course of Crohn's disease: A cohort study.  Lancet 2002; 359:1661-5.
  37. Zhou Z, Lin XY, Akolkar PN, Gulwani-Akolkar B, Levine J, Katz S, et al. Variation at NOD2/CARD15 in familial and sporadic cases of Crohn's disease in the Ashkenazi Jewish population.  Am J Gastroenterol 2002; 97:3095-101.
  38. Cho JH. The genetics and immunopathogenesis of inflammatory bowel disease. Nat Rev Immunol 2008; 8(6):458-66.
  39. Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science 2000; 290(5497):1717-21.
  40. Kirkegaard K, Taylor MP, Jackson WT. Cellular autophagy: surrender, avoidance and subversion by microorganisms. Nat Rev Microbiol 2004; 2(4):301-14.
  41. Levine B. Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell 2005; 120(2):159-62.
  42. Schmid D, Pypaert M, Münz C. Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity. 2007;26(1):79-92.
  43. Hampe J, Franke A, Rosenstiel P, Till A, Teuber M, Huse K, et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 2007; 39(2):207-11.
  44. Rioux JD, Xavier RJ, Taylor KD, Silverberg MS, Goyette P, Huett A, et al: Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis.  Nat Genet 2007; 39:596-604.
  45. Marcuzzi A, Bianco AM, Girardelli M, Tommasini A, Martelossi S, Monasta L, et al. Genetic and functional profiling of Crohn's disease: autophagy mechanism and susceptibility to infectious diseases. Biomed Res Int 2013; 2013:297501.
  46. Cooney R, Baker J, Brain O, Danis B, Pichulik T, Allan P, et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med 2010; 16(1):90-7.
  47. Travassos LH, Carneiro LA, Ramjeet M, Hussey S, Kim YG, Magalhães JG, et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol 2010; 11:55–62.
  48. Kuballa P, Huett A, Rioux JD, Daly MJ, Xavier RJ. Impaired autophagy of an intracellular pathogen induced by a Crohn's disease associated ATG16L1 variant. PLoS One 2008; 3(10):e3391
  49. Cadwell K, Liu JY, Brown SL, Miyoshi H, Loh J, Lennerz JK, et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 2008; 456(7219):259-63
  50. Parkes M, Barrett JC, Prescott NJ, Tremelling M, Anderson CA, Fisher SA, et al. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn's disease susceptibility.  Nat Genet 2007; 39:830-2.
  51. Taylor GA, Feng CG, Sher A. p47 GTPases: regulators of immunity to intracellular pathogens. Nat Rev Immunol 2004; 4(2):100-9.
  52. Singh SB, Davis AS, Taylor GA, Deretic V. Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 2006; 313(5792):1438-41.

The fully formatted PDF version is available.

Download Article

Int J Biomed. 2014; 4(1):7-10. © 2014 International Medical Research and Development Corporation. All rights reserved.