Influence of Natural Lung Surfactant Inhalations on Clinical Symptoms and Pulmonary Function Parameters in Patients with Bronchial Asthma. Communication 1

O.V. Stepanova, MD¹; E.A. Akulova, MD¹; A.A. Kochneva, MD¹; A.A. Seiliev, PhD ²; A. Ed. Shulga²; O.V. Lovacheva, MD, PhD, ScD³; S.A. Lukyanov, MD, PhD¹; K.G. Shapovalov, MD, PhD, ScD¹; V.A. Volchkov, MD, PhD, ScD²; O.A. Rosenberg, MD, PhD, ScD²*

¹Chita State Medical Academy of Ministry of Health, Chita, Russia; ²Russian Research Center of Radiology and Surgery Technologies, St. Petersburg, Russia; ³Central Tuberculosis Research Institute, Moscow, Russia

*Corresponding author: Prof. Oleg Rosenberg, MD, PhD, ScD. Department of Medical Biotechnology of Russian Research Center of Radiology and Surgery Technologies, St. Petersburg,  Russia. E-mail: rozenberg@biosurf.ru

Published: December 16, 2016.  DOI: 10.21103/Article6(4)_OA1

Abstract: 

Background: Damage to lung surfactant (LS) enabling the lung local immunity may contribute to the development of bronchial inflammation in patients with bronchial asthma.
Methods and Results: A 40-day course of 16 LS (Surfactant-BL) inhalations at the dose of 25mg was added to inhaled corticosteroids (ICS) and short/long-acting bronchodilators or combined inhalers in 14 patients with bronchial asthma. After 7 inhalations, patients demonstrated a significant decrease in shortness of breath and bronchospasm attacks, double reduction of ICS dose (P=0.01), and improvement of pulmonary function. Forced vital capacity (FVC) increases during treatment in a linear fashion (y=62.9+5.60·x; P<0.05), reaching the normal level (80%) after 9 inhalations (Day 15). Forced expiratory volume (FEV1) increases in a linear fashion (y=50.7+4.15·x; P<0.05) without reaching the normal level (80%) after 16 inhalations (Day 41). The FEV1/FVC ratio does not change significantly in the time period between Day 1 to Day 15. By Day 41 the value decreases significantly to 67.4±4.66% (P<0.05). The peak expiratory flow (PEF) parameter increases in a linear fashion (y=53.9+5.00·x; P<0.01) from 57.7±6.33% to 76.2±9.33% of the predicted value.
Conclusion: LS inhalations improve the condition of patients with BA, allow ICS dose reduction by 2 times, and improve pulmonary function parameters. 

Keywords: 
lung surfactant, bronchial asthma, inhaled corticosteroids, dose, pulmonary function
References: 
  1. Kelly HW, Nelson HS. Potential adverse effects of the inhaled corticosteroids. J Allergy Clin Immunol. 2003; 112(3):469–78.
  2. Rosenberg OA, Lebedeva ES, Loshakova LV, Shulga  AEd, Seiliev AA, Volchkov VA. Influence of Long-Term Inhaled Glucocorticoids on the Lung Surfactant Phospholipid Levels in Rats. Int J Biomed. 2016; 6(3):167-69.
  3. Kurashima K, Fujimura M, Matsuda T, Kobayashi T. Surface activity of sputum from acute asthmatic patients. Am J Respir Crit Care Med. 1997; 155(4):1254-9.
  4. Devendra G., Spragg RG. Lung surfactant in subacute pulmonary disease. Respir Res. 2002; 3:19. 
  5. van Iwaarden FJ, van Golde LMJ. Pulmonary surfactant and lung defense. In: Robertson B, Taeusch HW, editors. Surfactant therapy for lung disease. Lung biology in health and disease.  Vol. 84. New York: Marcel Dekker Inc; 1995:75-84.
  6. Rozenberg OA. Pulmonary Surfactants for Acute and Chronic Lung Diseases (Part II). Gen Reanimatol. 2014; 10(5):69-86.
  7. Hohlfeld JM. The role of surfactant in asthma. Respir Res. 2002; 3:4.
  8. A Pocket Guide for Physicians and Nurses Updates 2015. Retrieved from ginasthma.org/wp-content/uploads/.../GINA_Pocket_2015.p
  9. Quanjer PH, Tammeling GJ, Cotes JE, Pedersen OF, Peslin R, Yernault JC. Lung volumes and forced ventilatory flows. Report Working Party Standardization of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. Eur. Resp J Suppl. 1993; 16:5-40.
  10. Miller MR1, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al.; ATS/ERS Task Force. Standardisation of spirometry. Eur Respir J. 2015, 26(2):319-38.
  11. Federal Clinical Recommendations on the Use of Spirometric Method. 2013; Retrieved from  http://spulmo.ru/download/spirometry.doc.
  12. Cheng G, Ueda T, Sugiyama K, Toda M, Fukuda T. Compositional and functional changes of pulmonary surfactant in a guinea-pig model of chronic asthma. Respir Med. 2001; 95(3):180–6.
  13. Babu KS , Woodcock DA, Smith SE, Staniforth JN, Holgate ST, Conway JH. Inhaled synthetic surfactant abolishes the early allergen-induced response in asthma. Eur Respir J. 2003; 21(6):1046–9.
  14. Kurashima K, Ogawa H, Ohka T, Fujimura M, Matsuda T, Kobayashi T. A pilot study of surfactant inhalation in the treatment of asthmatic attack. Arerugi. 1991;40(2):160-3.
  15. Zagorul'ko AK, Nikitina NV, Askari TA, Zagorul'ko AA. Role of the pulmonary surfactant in the pathogenesis of bronchial asthma. Lik Sprava. 2001;(5-6):16-9. [Article in Russian].
  16. Rosenberg OA, Kirillov YA, Danilov LN, Loshakova LV, Lebedeva ES, Shylga AE et al. The lung surfactant immune system response to intratracheal administration of “empty” liposomes. J Liposome Research. 1994; 4(1):203-212.
  17. Soll R, Ozek E. Multiple versus single doses of exogenous surfactant for the prevention or treatment of neonatal respiratory distress syndrome. Cochrane Database Syst Rev. 2009; 1: CD000141.  
  18. Gregory TJ, Steinberg KP, Spragg R, Gadek JE, Hyers TM, Longmore WJ et al. Bovine surfactant therapy for patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 1997; 155(4):1309-15.
  19. Rosenberg OA, Bautin AE, Osovskich VV, Tsibulkin EK, Gavrilin SV., Kozlov IA. When to start surfactant therapy (ST_therapy) of acute lung injury? Abstracts 11th ERS Annual Congress Berlin, Germany. September 22—26, 2001. Eur Respir J. 2001; 18 (Suppl 38): P153, 7s.
  20. Bautin A, Khubulava G, Kozlov I, Poptzov V, Osovskikh V, Seiliev A, et al. Surfactant Therapy for Patients with ARDS after Cardiac Surgery. J Liposome Research. 2006; 16 (3): 265-72.
  21. Rosenberg O, Seiliev A, Zhuikov A. Lung surfactant: correlation between biophysical characteristics, composition, and therapeutic efficacy. In: Gregoriadis G., editor. Liposome Technology. New York: Informa Healthcare; 2006:317–345.
  22. Lovacheva OV, Chemichenko NV, Lepekha LN, Erokhin VV, Rosenberg OA. Use of surfactant-BL (S-BL) in complex treatment of pulmonary TB patients. ERJ. 2003; 22, Suppl.45, P3250, 521s.
  23. Erokhin VV, Romanova LK. Lung Surfactant System. In: Erokhin VV, Romanova LK, editors. Lung Cell Biology in Health and Pathology. Doctors’ Handbook. Moscow: Medicine; 2000:167-181. [in Russian].
  24. Zhemkov VF, Ivanovsky VB, Zhemkova MV, Seiliev AA, Volchkov VA, Rosenberg OA.  Use of natural lung surfactant in the combination treatment of pulmonary tuberculosis. Tuberculosis and Lung Diseases. 2013;91(2):18-22. [Article in Russian].

The fully formatted PDF version is available.
Download Article
Int J Biomed. 2016;6(4):255-258. © 2016 International Medical Research and Development Corporation. All rights reserved.