Hondroplastic Efficiency of Calcified Bone Matrix Produced by Original Technology

Yuri M. Iryanov, Nikolay A. Kiryanov

 
International Journal of Biomedicine. 2018;8(2):142-146.   
DOI: 10.21103/Article8(2)_OA7
Originally published June 15, 2018  

Abstract: 

The purpose of our research was to study the chondroplastic efficiency of the bone matrix obtained by the original technology, while restoring the defect of cartilage of the knee joint.
Methods: In 40 adult Wistar male rats, marginal defects were modeled on the surface of the distal end of the femur. The animals of the experimental group were implanted with bone matrix into the damage zone. The material was examined by light microscopy, transmission and scanning electron microscopy, and X-ray electron probe microanalysis.
Results: It was established that bone matrix did not cause immune rejection reaction and has prolonged activated reparative chondrogenesis. In the area of articular cartilage damage, a regenerate was formed, acquiring cellular and histochemical specificity of the hyaline cartilaginous tissue. The properties of the chondroinductor to the bone matrix were ensured by localized growth factors and bone morphogenetic proteins released during osteoclastic resorption.
Conclusion: The use of bone matrix as a stimulant of chondrogenesis is theoretically justified and has a good prospect in the treatment of articular cartilage damage and diseases.

Keywords: 
articular cartilage • bone matrix • implantation • chondrogenesis
References: 
  1. Gerasimov SA, Tenilin NA, Korytkin AA, Zykin AA. [Surgical treatment of localized injuries to articular surface: the current state of the issue]. Polytrauma. 2016;1:63-69. [Article in Russian].
  2. Lee SH, Yoo CJ, Lee U, Park ChW, Lee SG, Kim WK. Resorption of Autogenous Bone Graft in Cranioplasty: Resorption and Reintegration Failure. Korean J Neurotrauma. 2014;10(1):10-14. doi: 10.13004/kjnt.2014.10.1.10. Google Scholar
  3. Singh R, Singh D, Singh A. Radiation sterilization of tissue allografts: A review. World J Radiol. 2016; 8(4):355-69. doi:  10.4329/wjr.v8.i4.355. PubMed
  4. Filardo G, Kon E, Roffi A, Di Martino A, Marcacci M. Scaffold-based repair for cartilage healing: a systematic review and technical note. Arthroscopy. 2013;29(1):174-86. doi: 10.1016/j.arthro.2012.05.891. PubMed
  5. Hustedt JW, Jegede KA, Badrinath R, Bohl DD, Blizzard DJ, Grauer JN. Optimal aspiration volume of vertebral bone marrow for use in spinal fusion. Spine J. 2013;13(10):1217-22. doi:10.1016/j.spinee.2013.07.435. PubMed
  6. Johnstone B, Alini M, Cucchiarini M, Dodge GR, Eglin D, Guilak F, et al. Tissue engineering for articular cartilage repair--the state of the art. Eur Cell Mater. 2013;25:248-67. PubMed
  7. Iryanov YuM, Iryanova TYu. Biomaterial for the repair of bone defects and the way it is produced. RF Pat 2478394 (Russian Ilizarov Scientific Center «Restorative Traumatology and Orthopedics») Bul. 2013;10:1-2.[in Russian],
  8. Irianov YuM, Irianova TYu. [Roentgenologic electron probe microanalysis in quantitative histochemistry]. Morphological Newsletter. 2010;3:77-79. [Article in Russian].
  9. Makris EA, Gomoll AH, Malizos KN, Hu JC, Athanasiou KA. Repair and tissue engineering techniques for articular cartilage. Nat Rev Rheumatol. 2015;11(1):21-34. doi: 10.1038/nrrheum.2014.157. PubMed
  10. Saintigny Y, Cruet-Hennequart S, Hamdi DH, Chevalier F, Lefaix JL Impact of therapeutic irradiation on healthy articular cartilage. Radiat Res. 2015;183(2):135-46. doi: org/10.1667/RR13928.1. PubMed
  11. Camp CL, Stuart MJ, Krych, AJ. Current concepts of articular cartilage restoration techniques in the knee. Sports Health. 2014;6(3):265-73. doi: 10.1177/1941738113508917. PubMed
  12. Caldwell KL, Wang J. Cell-Based articular cartilage repair: the link between development and regeneration. Osteoarthritis Cartilage. 2015;23(3):351-62. doi:  10.1016/j.joca.2014.11.004. PubMed
  13. Mardones R, Jofré CM, Minguell JJ. Cell Therapy and Tissue Engineering Approaches for Cartilage Repair and/or Regeneration. Int J Stem Cells. 2015; 8(1):48-53. doi:  10.15283/ijsc.2015.8.1.48. PubMed
  14. Kaur S, Grover V, Kaur H, Malhotra R. Evaluation of bone morphogenic proteins in periodontal practice. Indian J Dent. 2016;7(1):28-37. doi: 10.4103/0975-962X.179379. PubMed
  15. Jain AP, Pundir S, Sharma A. Bone morphogenetic proteins: The anomalous molecules. J Indian Soc Periodontol. 2013;17:583-6. doi: 10.4103/0972-124X.119275. PubMed
  16. Oryan A, Kamali A, Moshiri A, Baghaban Eslaminejad M. Role of Mesenchymal Stem Cells in Bone Regenerative Medicine: What Is the Evidence? Cells Tissues Organs. 2017;204(2):59-83. doi: org/10.1159/000469704. PubMed
  17.  Scarfì S. Use of bone morphogenetic proteins in mesenchymal stem cell stimulation of cartilage and bone repair. World J Stem Cells. 2016;8(1):1-12. doi:  10.4252/wjsc.v8.i1.1. PubMed
  18. Cecchia S, Benneta SJ, Arora M. Bone morphogenetic protein-7: Review of signalling and efficacy in fracture healing. Journal of Orthopaedic Translation. 2016;4:28-34. Google Scholar

Download Article
Received April 30, 2018.
Accepted May 20, 2018.
©2018 International Medical Research and Development Corporation.