Oxidative Stress Assessment in Different Ethnic Groups of Girls with Exogenous Constitutional Obesity Complicated by Non-Alcoholic Fatty Liver Disease

Marina A. Darenskaya, Lyubov V. Rychkova, Larisa A. Zhdanova, Lyudmila A. Grebenkina, Oksana A. Gavrilova, Elena V. Osipova, Natalya V. Semenova, Sergey I. Kolesnikov, Lyubov I. Kolesnikova

International Journal of Biomedicine. 2019;9(3):223-227.   
DOI: 10.21103/Article9(3)_OA7
Originally published September 15, 2019  


The purpose of this study was to assess the lipid peroxidation (LPO) and antioxidative defense (AOD) indicators in different ethnic groups of adolescent girls with exogenous constitutional obesity (ECO) and non-alcoholic fatty liver disease (NAFLD).
Materials and Methods: A total of 20 Mongoloid teenage girls and 20 Caucasian teenage girls with NAFLD (Clinical group 1 and Clinical group 2, respectively) on the background of ECO of the first degree were examined. For comparison, data of 28 healthy Mongoloid teenage girls (Control group 1) and 20 Caucasian teenage girls (Control group 2) were used. The plasma level of antioxidant parameters (total antioxidant activity [TTA], SOD activity, α-tocopherol and retinol) and primary/secondary products of LPO (conjugated dienes [CD], ketodienes and conjugated trienes [KD-CT], and thiobarbituric acid reactive substances [TBARS]) were determined using spectrophotometric and fluorometric methods.
Results: Evaluation of the activity of LPO reactions in Clinical group 1 indicated an increase in the content of CD, KD-CT, and TBARS relative to Control group 1. In Clinical group 2, we found an increased CD content (P=0.0463) relative to Control group 2. Interethnic differences resulted in elevated levels of KD-CT in Clinical group 1 compared to Clinical group 2.In the parameters of the AOD system, we observed reduced levels of TAA, retinol and glutathione-S-transferase (G-S-T) activity in Clinical group 2 compared to Control group 2. In Clinical group 1, we observed reduced levels of α-tocopherol, retinol and G-S-T activity compared to Control group 1. There were no differences in the parameters of the AOD system between Clinical group 1 and Clinical group Conclusion: The results obtained indicate high activity of LPO processes and severe deficiency of antioxidant factors in Mongoloid girls with ECO and NAFLD in comparison with Caucasian girls with obesity and NAFLD and the control group. The obtained results allow us to recommend administration of antioxidant drugs in addition to basic therapy in comprehensive treatment of patients with NAFLD.

adolescent • oxidative stress • obesity • non-alcoholic fatty liver disease
  1. Marion AW, Baker AJ, Dhawan A. Fatty liver disease in children. Arch Dis Child. 2004;89(7):648-652.
  2. Angulo P. Obesity and nonalcoholic fatty liver disease. Nutr Rev. 2007;65(6 Pt 2): S57-63.
  3. Sheth SG, Chopra S. Epidemiology, clinical features, and diagnosis of nonalcoholic fatty liver disease in adults. Waltham (MA): UpToDate; 2017.
  4. McCullough AJ. Pathophysiology of nonalcoholic steatohepatitis. J Clin Gastroenterol. 2006;40Suppl 1:S17-29. doi: 10.1097/01.mcg.0000168645.86658.22.
  5. Guijarro de Armas MG, Monereo Megías S, Navea Aguilera C, Merino Viveros M, Vega Piñero MB. [Non-alcoholic fatty liver in children and adolescents with excess weight and obesity]. Med Clin (Barc). 2015 Jan 20;144(2):55-8. doi: 10.1016/j.medcli.2014.02.018. [Article in Spanish].
  6. Rinella ME. Nonalcoholic fatty liver disease: a systematic review. JAMA. 2015 313(22):2263-73. doi: 10.1001/jama.2015.5370.
  7. Darenskaya MA, Gavrilova OA, Rychkova LV, Zhdanova LA, Buldaeva EA, Grebenkina LA, et al. Characteristics of lipid peroxidation processes and antioxidant status in teenagers-boys of different ethnic groups with exogenous constitutional obesity and non-alcoholic fatty liver disease. International Journal of Biomedicine. 2018;8(4):306-310. doi: 10.21103/Article8(4)_OA7
  8. Darenskaya MA, Rychkova LV, Gavrilova OA, Zhdanova VL, Bimbaev AB-Zh, Grebenkina LA, et al. Lipid peroxidation parameters in mongoloid-patients with obesity and hepatosis. Free Radical Biology & Medicine. 2018;120(S1):S61. doi: 10.1016/j.freeradbiomed.2018.04.201
  9. Darenskaya MA, Grebenkina LA, Sholokhov LF, Rashidova MA, Semenova NV, Kolesnikov SI, Kolesnikova LI. Lipid Peroxidation Activity in Women with Chronic Viral Hepatitis. Free Radical Biol. Med. 2016;100(Suppl):S192.
  10. Mehta K., Van Thiel D.H., Shah N, Mobarhan S.. Nonalcoholic fatty liver disease: pathogenesis and the role of antioxidants. Nutr Rev. 2002;60(9):289-93.
  11. Köroğlu E, Canbakan B, Atay K, Hatemi İ, Tuncer M, Dobrucalı A, Sonsuz A, Gültepe I, Şentürk H. Role of oxidative stress and insulin resistance in disease severity of non-alcoholic fatty liver disease. Turk J Gastroenterol. 2016;27(4):361-6. doi: 10.5152/tjg.2016.16106.
  12. Lirussi F, Azzalini L, Orando S, Orlando R, Angelico F. Antioxidant supplements for non-alcoholic fatty liver disease and/or steatohepatitis. Cochrane Database Syst Rev. 2007 Jan 24;(1):CD004996.
  13. Darenskaya MA, Rychkova LV, Kolesnikov SI, et al. Oxidative stress parameters in adolescent boys with exogenous-constitutional obesity. Free Radical Biology & Medicine. 2017;112:129-30.
  14. Kolesnikova LI, Darenskaya MA, Grebenkina LA, Suturina LV, Labygina AV, Semenova NV, et al. [Characteristics of the antioxidant system of healthy people of main ethnic groups living near Baikal Lake]. Vopr Pitan. 2012;81(3):46-51..[Article in Russian].
  15. Kolesnikova LI, Darenskaya MA, Grebenkina LA, Dolgikh MI, Astakhova TA, Semenova NV. [Gender differences in parameters of lipid metabolism and of level of antioxidants in groups of juveniles--the Evenks and the Europeans]. Zh Evol Biokhim Fiziol. 2014 Jan-Feb;50(1):31-7.[Article in Russian].
  16. Kolesnikova LI, Darenskaya MA, Grebenkina LA, Labygina AV, Suturina LV, Dolgikh MI, et al. Activity of lipid peroxidation in infertile women from different populations. Bull Exp Biol Med. 2012;154(2):203-5.
  17. Kolesnikova LI, Kolesnikov SI, Darenskaya MA, Grebenkina LA, Semenova NV, Osipova EV, et al. Lipid Status and Predisposing Genes in Patients with Diabetes Mellitus Type 1 from Various Ethnic Groups. Bull Exp Biol Med. 2015;160(2):278-80. doi: 10.1007/s10517-015-3149-5.
  18. Volchegorskiĭ IA, Nalimov AG, Iarovinskiĭ BG, Lifshits RI. [Comparison of various approaches to the determination of the products of lipid peroxidation in heptane-isopropanol extracts of blood]. Vopr Med Khim. 1989;35(1):127-31.[Article in Russian].
  19. Gavrilov VB, Gavrilova AR, Mazhul' LM. [Methods of determining lipid peroxidation products in the serum using a thiobarbituric acid test].Vopr Med Khim. 1987;33(1):118-22.[Article in Russian].
  20. Klebanov GI, Babenkova IV, Teselkin IuO, Komarov OS, Vladimirov IuA. [Evaluation of the antioxidative activity of blood plasma using yolk lipoproteins]. Lab Delo. 1988;(5):59-62.[Article in Russian].
  21. Cherniauskene RCh, Varshkiavichene ZZ, Gribauskas PS. [Simultaneous fluorometric determination of the concentrations of vitamins E and A in blood serum]. Lab Delo. 1984;(6):362-5.[Article in Russian]
  22. Hisin PJ, Hilf R. A fluorоmetric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem. 1976;74(1):214–26.
  23. Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247(10):3170–5.
  24. Heymsfield SB, Wadden TA. Mechanisms, Pathophysiology, and Management of Obesity. N Engl J Med. 2017;376(3):254-266. doi: 10.1056/NEJMra1514009.
  25. Camacho S, Ruppel A. Is the calorie concept a real solution to the obesity epidemic? Glob Health Action. 2017;10(1):1289650. doi: 10.1080/16549716.2017.1289650.
  26. Kolosov YuA, Kolesnikov SI, Anischenko AP, Burdukova EV, Gurevich KG. [Overweight and obesity in children, adolescents and adults: causes of development and risk factors]. Patogenez [Pathogenesis].2016; Vol. 14 (4): 9-14. [Article in Russian].
  27. Sun M, Huang X, Yan Y, Chen J, Wang Z, Xie M, Li J.  Rac1 is a possible link between obesity and oxidative stress in Chinese overweight adolescents. Obesity (Silver Spring). 2012;20(11):2233-40. doi: 10.1038/oby.2012.63.
  28. Kolesnikova LI, Semyonova NV, Grebenkina LA, Darenskaya MA, Suturina LV, Gnusina S. Integral indicator of oxidative stress in human blood. Bull Exp Biol Med. 2014;157(6):715-7. doi: 10.1007/s10517-014-2649-z.
  29. Darenskaya MA, Gavrilova OA, Rychkova LV,  Kravtsova OV, Grebenkina LA, Osipova EV, et al. The assessment of oxidative stress intensity in adolescents with obesity by the integral index. International Journal of Biomedicine.2018;8(1)37-41. doi: 10.21103/Article8(1)_OA5
  30. Kolesnikova LI, Darenskaya MA, Grebenkina LA, Dolgikh MI, Semenova NV. [Adaptive reactions of lipid metabolism in native and alien female representatives of Tofalaria population living under extreme environmental conditions]. Zh Evol Biokhim Fiziol. 2014;50(5):343-8.[Article in Russian].
  31. Guerendiain M. Mayneris-Perxachs J, Montes R, López-Belmonte G, Martín-Matillas, M, Castellote AI. Relation between plasma antioxidant vitamin levels, adiposity and cardio-metabolic profile in adolescents: Effects of a multidisciplinary obesity programme. Clinical nutrition. 2017;36(1):209-217.
  32. Meydani M. Vitamin E. Lancet.1995;345(8943):170–5.
  33. Kaul N, Devaraj S, Jialal I. Alpha-tocopherol and atherosclerosis. Exp Biol Med (Maywood). 2001;226(1):5–12.
  34. Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur J Med Chem. 2015; 97:55-74. doi: 10.1016/j.ejmech.2015.04.040.
  35. Kodentsova VM, Vrzhesinskaia OA, Mazo VK. [Vitamins and oxidative stress]. Vopr Pitan. 2013;82(3):11-8. [Article in Russian]
  36. Karbownik-Lewinska M, Szosland J, Kokoszko-Bilska A, Stępniak J, Zasada K, Gesing A, Lewinski A. Direct contribution of obesity to oxidative damage to macromolecules. Neuro Endocrinol Lett. 2012;33(4):453-61.

Download Article
Received August 14, 2019.
Accepted September 9, 2019.
©2019 International Medical Research and Development Corporation.