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Abstract
Cervical remodeling is an active dynamic process that begins long before the onset of labor. The optimal course of the cervical 

ripening/remodeling processes is a prerequisite for successful vaginal delivery. Cervical remodeling is a slow progressive process that 
begins early in mammalian pregnancies, and can be loosely divided into four overlapping phases termed softening, ripening, dilation/
labor, and postpartum repair. This review discusses some aspects of structural changes in the cervix at different stages of cervical 
ripening. In particular, the role of cervical epithelia, immune-inflammatory factors/cells, and components of the cervical extracellular 
matrix in cervical ripening is considered. A better understanding of the molecular-biochemical and histophysiological processes 
occurring during cervical remodeling is critical for the development of novel approaches to treat cervical insufficiency, preterm labor, 
and postpartum cervical disorders associated with its integrity.  (International Journal of Biomedicine. 2020;10(4):324-329.) 
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Introduction
The uterine cervix performs two critical functions 

during pregnancy. First, the primary biomechanical function 
of the cervix is to maintain the fetus within the uterus until the 
appropriate time for delivery. Second, at the end of pregnancy, 
the cervix prepares for labor and delivery and begins to soften 
(ripen), thin out, and open (cervical ripening). Studying the 
ultrastructural processes of cervical remodeling is critical for 
the prevention and management of preterm delivery.(1-4)

The optimal course of the cervical ripening/remodeling 
processes is a prerequisite for successful vaginal delivery. 

The premature cervical opening can result in preterm birth, 
which occurs in 12.5% of pregnancies and is the  leading 
cause of neonatal morbidity as well as the cause of later health 
problems.(5)  In this regard, understanding the fundamental 
biochemical and histophysiological processes occurring 
during cervical ripening is essential in the prevention of 
preterm labor and birth. This review discusses some aspects of 
structural changes in the cervix at different stages of cervical 
ripening. In particular, the role of cervical epithelia, immune-
inflammatory factors/cells, and components of the cervical 
extracellular matrix in cervical ripening is considered.

Distinct Phases of Cervical Remodeling

The transformation of the cervix from a closed rigid 
structure in a soft and distensible structure, which opens 
sufficiently for birth, is an active dynamic process that 
begins at the early stages of gestation. A better understanding 

*Corresponding author: Aleksey M. Chaulin, PGS.  Samara 
State Medical University; Samara, the Russian Federation. E-mail: 
alekseymichailovich22976@gmail.com



325Yu. V. Grigorieva et al. / International Journal of Biomedicine 10(4) (2020) 324-329

of the molecular-biochemical and histophysiological 
processes occurring during cervical remodeling is critical 
for the development of novel approaches to treat cervical 
insufficiency, preterm labor, and postpartum cervical disorders 
associated with its integrity. Although biopsy material from 
pregnant women before term is limited, experimental studies 
in rodents have facilitated a comparative evaluation of the 
cervical remodeling process. 

Cervical remodeling is a slow progressive process that 
begins early in mammalian pregnancies, and can be loosely 
divided into four overlapping phases termed softening, 
ripening, dilation/labor, and postpartum repair.(6-9)

Cervical softening (Phase 1)

Cervical softening (Phase 1) can be defined as a 
change in the biomechanical properties of the cervix when 
compared with the nonpregnant cervix and is characterized 
by a progressive decrease in tissue stiffness without loss 
of tensile strength.(7,10) From a restrictive and rigid barrier 
before pregnancy, the cervix grows and softens during Phase 
1 of remodeling under the trophic influences of a variety of 
hormones and ovarian steroids.(11) Experimental studies in 
mice indicated that the softening phase begins by day 12 of a 
19-day gestation.(5,7-9,12,13) 

Cervical softening begins early in mammalian 
pregnancies. In 1895, Hegar first described the ‘softening’ 
of the lower uterine segment in association with human 
pregnancy at 4–6 weeks. Phase 1 is a relatively slow and 
incremental process. This phase takes place in a progesterone 
rich environment. Yoshida et al.(14) reported that in the early 
softening period mature cross-linked collagens decline and are 
replaced by immature collagens to facilitate increased tissue 
compliance. Increases in collagen solubility in Phase 1 is one 
of the earlier events in the remodeling process. Akins et al.(15) 
showed that early changes in tensile strength during cervical 
softening result in part from changes in the number and type 
of collagen cross-links and are associated with a decline in 
expression of two matricellular proteins thrombospondin 2 
(THBS2) and tenascin C (TnC). 

M. Mahendroo(16) highlights that the gradual replacement 
of mature cross-linked collagen with collagen harboring 
reduced cross-links along with the decline in THBS2 and 
TnC in the cervix is key to modulating collagen architecture 
within the extracellular matrix during softening and initiating 
the incremental fall in cervical mechanical strength while 
maintaining tissue integrity.

Gene expression studies performed by Read et al.(7) 

revealed a potentially important role of cervical epithelia during 
softening and ripening in the maintenance of the immuno-
mucosal barrier that protects the stromal compartment during 
matrix remodeling. Expression of two genes involved in repair 
and protection of the epithelial permeability barrier in the 
gut (trefoil factor 1, Tff1) and skin (serine protease inhibitor 
Kazal type 5, Spink5) was increased during softening and/or 
ripening. Expression of the Pcp4 gene encoding Purkinje cell 
protein 4 (a neuronal-specific calmodulin regulatory protein 
that inhibits apoptosis) decreased as remodeling progressed. 
These results indicate that cervical softening during 

pregnancy is a unique phase of the tissue remodeling process 
characterized by increased collagen solubility, maintenance of 
tissue strength, and upregulation of genes involved in mucosal 
protection.(7) 

A marked proliferation of the mucosal epithelia occurs 
in the latter half of rat pregnancy.(17) By gestation day 16 and 
17 as the softening phase merges into the ripening phase, the 
epithelium becomes laden with mucin-secreting vacuoles 
important in immune surveillance and lubrication.(16) During 
softening and ripening, the cervical epithelia maintain fluid 
balance  and permeability barrier via regulated expression 
of aquaporins, gap junction proteins connexin 26 and 43, 
hyaluronan synthase 2, desmogleins (1 alpha and 1 beta), and 
claudin proteins.(18-21)

In contrast to the later phases of cervical remodeling, 
major inflammatory events do not mediate the softening 
process. In Phase 1, only little changes in the distribution of 
macrophages or neutrophils are revealed.(7)

Cervical ripening (Phase 2) 

Following softening, cervical ripening (Phase 2) 
occurs in the weeks or days preceding birth. The transition 
to Phase 2 is mediated by a decline in progesterone synthesis, 
increased cervical progesterone metabolism, and increased 
synthesis of estradiol and relaxin.(5) The results obtained by 
B. C. Timmons,(22) evident that cervical ripening requires 
downregulation of collagen assembly genes; increased 
synthesis of glycosaminoglycans that disrupt the matrix, such 
as hyaluronan; increased metabolism of progesterone; and 
changes in epithelial barrier properties. Cervical ripening 
is characterized by an increase in the content of hyaluronic 
acid, loosening of the collagen matrix, increased collagen 
solubility,(23,24) changes in the distribution of inflammatory 
cells, increased tissue growth and hydration, and loss of tensile 
strength.(25-28) Thus, this phase is characterized by maximal 
loss of tissue compliance and integrity. 

During cervical ripening, alterations in collagen 
structure and packing are influenced by the composition of 
glycosaminoglycans (GAGs) in the extracellular matrix. 
Osmers and al.(29) showed that the clinical features of cervical 
ripening and dilatation were characterized by variation in 
the total glycosaminoglycan content and changes in the 
proportions of the different glycosaminoglycans (HA, 
dermatan sulfate, chondroitin sulfate, and heparan sulfate). 
The studies performed by Ruscheinsky et al.(30) suggest that 
HA has multiple, cell-specific functions in the cervix that 
may include modulation of tissue structure and integrity, 
epithelial cell migration and differentiation, and inflammatory 
responses. Increased hyaluronan synthase 2 expression and 
the subsequent increase in HA is a distinct feature of cervical 
ripening and dilation.(27)  Proteoglycans containing sulfated 
GAG chains modulate collagen fibril size, spacing, and access 
to proteases.(31,32)

Several studies have suggested that normal cervical 
ripening may be a sterile inflammatory state characterized by an 
influx of immune cells into the cervix.(33-38) M. Mahendroo (16) 
and other authors (39,40) consider that immune cells are present 
but not activated during cervical ripening.
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Cervical dilatation /labor (Phase 3) 
According to Mendelson,(41)  both term and preterm labor 

in humans and rodents are associated with an inflammatory 
response. If in preterm labor, intraamniotic infections may 
provide the stimulus for increased amniotic fluid interleukins 
and inflammatory cell migration,(42) at term, the stimulus for 
this inflammatory response is unknown. 

Increasing evidence suggests that at term labor 
mechanical stretch (43,44) caused by the growing fetus, as well 
as hormonal signals produced by the developing fetus near 
term,(45-48) promote the production of chemokines leading to 
macrophage migration and up-regulation of inflammatory 
response pathways with the release of cytokines and activation 
of inflammatory transcription factors, such as NF-kB and AP-
1, which also is activated by myometrial stretch.

Mendelson (41) postulates that the increased inflammatory 
response and NF-kappaB activation promote uterine 
contractility via 1) direct activation of contractile genes (e.g. 
COX-2,(49) oxytocin receptor,(50) and connexin 43)(51) and 2) 
impairment of the capacity of progesterone receptor to mediate 
uterine quiescence. 

After the onset of regular uterine contractions, the 
ripened cervix is dilated sufficiently (Phase 3) to allow the 
passage of the full-term fetus through the birth canal. Given the 
short duration of the ripening and dilation phases, it is difficult 
to identify processes that distinguish these two overlapping 
phases of cervical remodeling.  Just before birth, the final 
remodeling of the cervix is driven through the secretion of 
prostaglandins by the fetoplacental unit.  Upon the increased 
secretion of cortisol by the fetal adrenals, prostaglandin 
synthase (PGHS)-2 gene expression in the placenta is up-
regulated, resulting in increased production of PGE2 in the 
cervical region and subsequent matrix remodeling. (52) 

According to Hassan et al.,(53) cervical dilatation in 
term labor is associated with a stereotypic gene expression 
pattern determined by microarray, which is characterized by 
overexpression of genes involved in neutrophil chemotaxis, 
apoptosis, extracellular matrix regulation, and steroid 
metabolism. The dilation phase has been well-studied in women 
due to the availability of cervix biopsies. 

Postpartum repair (Phase 4) 

Accumulating evidence suggests that human parturition 
represents an inflammatory process and the infiltrating 
leukocytes are a major source of pro-inflammatory mediators. 
Macrophages appear to play a more crucial role in the onset 
of parturition.(54) Macrophages account for around 20% of 
the decidual leukocyte population(55) and there is an influx of 
macrophages into the myometrium, fetal membranes, decidua, 
placenta, and cervix during spontaneous term labor (56, 57) and in 
preterm labor.(58) 

Osman et al.(56) found that parturition was associated 
with a significant increase in IL-1beta, IL-6, and IL-8 mRNA 
expression in cervix and myometrium, IL-6 and IL-8 mRNA 
expression in chorio-decidua and IL-1beta and IL-8 mRNA 
expression in amnion. Histological analysis demonstrated 
that leukocytes (predominantly neutrophils and macrophages) 
infiltrate the uterine cervix coincident with the onset of labor.

In a study performed by Young et al.,(37) such pro-inflammatory 
cytokines as IL-6, IL-8, and TNFα have been identified in the 
cervix during labor.

Characteristics of inflammation during the dilation 
phase are supported by the increased presence of inducible 
nitric oxide synthetase (iNOS) in the cervix stroma of women 
at term, whether or not in labor.(59, 50) Overall, these findings 
raise the possibility that some balance of immune cell products 
guides extracellular remodeling to promote softening, 
ripening, and the capability to dilate. (61)

During postpartum repair (Phase 4), the integrity and 
competence of cervical tissues are recovered to ensure a normal 
cervical function for subsequent pregnancies.  Postpartum 
remodeling is characterized by decreased HA content, 
increased expression of genes involved in the assembly of 
mature collagen, synthesis of matrix proteins that promote a 
dense connective tissue, and inflammation.(22,30) 

Matricellular proteins  (SPARC, thrombospondin 1, 
thrombospondin 2, and tenascin C) modulating  interactions 
between cells and the extracellular matrix(62)  are expressed 
and regulated during cervical remodeling, but their specific 
function during postpartum repair remains to be elucidated.(63-66) 

A variety of factors, including metalloproteases, extracellular 
matrix proteins, and genes governing epithelial differentiation 
pathways, are all upregulated in postpartum,(22,39,67) as well as 
the expression of neutrophils, eosinophils, and both M1 and 
M2 macrophages.(5,16,37) The postpartum activation of M1 
macrophages and neutrophils generate pro-inflammatory 
molecules that are important in matrix cleanup, whereas the 
alternatively activated M2 macrophages prevent overactivation 
of the inflammatory process and promote tissue repair.(5) Thus, 
the postpartum repair is characterized as a pro-inflammatory 
wound-healing response. (16,22,68,69)

Conclusion
Cervical remodeling is an active dynamic process that 

begins long before the onset of labor. The optimal course of 
the cervical ripening/remodeling processes is a prerequisite 
for successful vaginal delivery. Much more information 
about in vivo human tissue is necessary for a comprehensive 
understanding of the complex process of cervical remodeling. 
A better understanding of the fundamental biochemical 
and histophysiological processes occurring during cervical 
ripening is essential in the prevention of preterm labor and 
birth.
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