Stability of Hyaluronan-Pectic Gel Particles in the Conditions of the Artificial Gastrointestinal Environment

Elena A. Mikhailova¹, Anatoly K. Melekhin¹, Vladimir A. Belyy, PhD²; Anatoly A. Shubakov, PhD¹

¹Institute of Physiology, Komi Science Centre, Ural Branch of the RAS; ²Institute of Chemistry, Komi Science Centre, Ural Branch of the RAS. Syktyvkar, Komi Republic, the Russian Federation

*Corresponding author: Elena A. Mikhailova. Department of Molecular Immunology and Biotechnology, Institute of Physiology, Komi Science Centre, Ural Branch of the RAS. Syktyvkar, the Russian Federation. E-mail: elena_elkina@mail.ru

Published: December 15, 2017.  doi: 10.21103/Article7(4)_OA8

Abstract: 

Spherical hyaluronan-pectic gel particles (HPGPs) from hyaluronic acid (HA) and low-methyl esterified pectins of callus cultures (CC) of tansy, duckweed, campion and commercial apple pectin were obtained by the method of ionotropic gelation in the presence of calcium ions. We investigated the morphology, swelling and degradation of the obtained HPGPs in the conditions of a simulated gastrointestinal environment and established that the greatest stability in the artificial environment of the digestive tract is achieved with HPGPs obtained from the pectin of tansy CC. HPGPs can be used as potential carriers for drug delivery systems in parts of the small and large intestine.

Keywords: 
hyaluronic acid ● pectin ● callus culture ● gel particles ● gastrointestinal environment
References: 
  1. Patova EA, Golovchenko VV, Ovodov YuS. [Pectic polysaccharides: structure, properties].  Izv AN Ser Chem. 2014;9:1901-25. [Article in Russian].
  2. Gűnter EA, Popeyko OV. Calcium pectinate gel beads obtained from callus cultures pectins as promising systems for colon-targeted drug delivery. Carbohydr Polym. 2016;147:490-9. doi: 10.1016/j.carbpol.2016.04.026
  3. Günter EA, Popeyko OV, Markov PA, Martinson EA, Litvinets SG, Durnev EA, et al. Swelling and morphology of calcium pectinate gel beads obtained from Silene vulgaris callus modified pectins. Carbohydr Polym. 2014;103:550-7.  doi: 10.1016.j.carbpol.2013.12.071
  4. Sriamornsak P, Nunthanid J. Calcium pectinate gel beads for controlled release drug delivery: I. Preparation and in vitro release studies. Int J Pharm. 1998;160:207-12. doi: PII S0378-5173(97)00310-4
  5. Sufiarov IF. [Experimental substantiation of the use of a film based on modified hyaluronic acid to prevent the formation of postoperative peritoneal adhesions]. Bull Exp Biol Med. 2007;144(8):238-40. [Article in Russian].
  6. Uspensky SA, Kildeeva NR, Maslova MV, Demina TS, Vikhoreva GA.[ Investigation of the stability of viscous properties of hyaluronic acid solutions for the preparation of polyelectrolyte complexes with chitosan]. Izv AN Ser Chem. 2016;1:273-76. [Article in Russian].
  7. Zhou Z, He S, Huang T, Peng C, Zhou H, Liu Q, et al. Preparation of gelatin/hyaluronic acid microspheres with different morphologies for drug delivery. Polym Bull. 2015;72:713-23. doi: 10.1007/s00289-015-1300-0
  8. Vildanova RR, Sigaeva NN, Kukovinets OS, Vlasova NM, Kolesov SV. [Modified hyaluronic acid and chitosan for production of hydrogels]. Vestnik Bashkirskogo Universiteta. 2016;21(1):63-68. [Article in Russian].
  9. Murashige T, Skoog. F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum. 1962;15(3):473-97. doi: 10.1111/j.1399-3054.1962.tb08052.x
  10. Gűnter EA. [Preparation of callus cultures of Silene vulgaris (M.) G.]. Biotechnology.  2002; 6:41-45. [Article in Russian].
  11. Gűnter EA, Popeyko OV, Ovodov YuS. [Isolation of polysaccharides from the callus culture of Lemna minor L.]. Prikl Biokhim Microbiol. 2004;40(1):94-97. [Article in Russian].
  12. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Analyt Chem. 1956;28(3):350-56.
  13. Usov AI, Bilan MI, Klochkova NG. Polysaccharide composition of several calcareous red algae: isolation of alginate from Corallina pilulifera P. et R. (Rhodophyta, Corallinaceae). Bot Marina. 1995; 38:43-51. doi: 10.1515/botm.1995.38.1-6.43
  14. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265-75.
  15. York WS, Darvill AG, McNeil M, Stevenson TT, Albercheim P. Isolation and characterization of plant cell walls and cell-wall components. Methods Enzymol. 1985;118:3-40.
  16. Sriamornsak P. Effect of calcium concentration, hardening agent and drying condition on release characteristics of oral proteins from calcium pectinate gel beads. Eur J Pharm Sci. 1999;8(3):221-7.
  17. Gebara C, Chaves KS, Ribeiro MCE, Souza FN, Grosso CRF, Gigante ML. Viability of Lactobacillus acidophilus La5 in pectin-whey protein microparticles during exposure to simulated gastrointestinal conditions. Food Res Int. 2013;51:872-78. doi: 10.1016/j.foodres.2013.02.008
  18. Oliveira GF, Ferrari PC, Carvalho LQ, Evangelista RC. Chitosan-pectin multiparticulate systems associated with enteric polymers for colonic drug delivery. Carbohydr Polym. 2010;82(3):1004-09. doi: 10.1016/j.carbpol.2010.06.041
  19. Chambin O, Dupuis G, Champion D, Voilley A, Pourcelot Y. Colon-specific drug delivery: Influence of solution reticulation properties upon pectin beads performance. Int J Pharm. 2006;321(1-2):86-93.
  20. Sriamornsak P, Kennedy RA. Swelling and diffusion studies of calcium polysaccharide gels intended for film coating. Int J Pharm. 2008;358(1-2):205-13. doi: 10.1016/j.ijpharm.2008.03.009.
  21. Lim ST, Martin GP, Berry DJ, Brown MB. Preparation and evaluation of the in vitro drug release properties and mucoadhesion of novel microspheres of hyaluronic acid and chitosan. J Control Release. 2000;66(2-3):281-92.
  22. Fatnassi M, Jacquart S, Brouillet F, Rey C, Combes C, Fullana SG. Optimization of spray-dried hyaluronic acid microspheres to formulate drug-loaded bone substitute materials. Powder Technol. 2014; 255:44-51. doi: 10.1016/j.powtec.2013.08.027

The fully formatted PDF version is available.

Download Article

International Journal of Biomedicine. 2017;7(4):310-314. ©2017 International Medical Research and Development Corporation. All rights reserved.