Determination of Blood Parameters using Scanning Electron Microscopy as a Prototype Model for Evaluating the Effectiveness of Radiation Therapy for Cervical Cancer

S. N. Mamaeva, I. V. Kononova, V. A. Alekseev, N. A. Nikolaevа, A. N. Pavlov, M. N. Semenova, G. V. Maksimov

 
International Journal of Biomedicine. 2021;11(1):32-38.
DOI: 10.21103/Article11(1)_OA6
Originally published March 5, 2021

Abstract: 

Using the method of SEM in patients with cervical cancer (CC) during radiation therapy (RT) revealed differences in the size and morphology of nanoparticles (NP) localized on the outer surface of the erythrocyte membrane. We found that NP-V (“viruses”) objects localized on the surface of the erythrocyte membrane of CC patients before RT have more distinct contours and are smaller in comparison with the number of NP-EV (extracellular vesicles) arising during RT. Our previous study showed that NP-V objects are evenly distributed not only on the surface of erythrocytes but also in blood plasma, and that during the RT the amount of NP-V decreases, while NP-EV both increases and decreases. The linear size of the NP-EV is characterized by a Gaussian distribution, while the NP-V has a normal size distribution in certain ranges with different mean values. We found that the number of NP-Vs having different linear dimensions differ significantly. Using X-ray radiation, we established characteristic elemental composition of NP. The PCR method was used to determine the HPV DNA in blood samples from CC patients. The revealed differences in the morphology and composition of NP, as well as the data of PCR analysis, possibly indicate their different nature and can be used as a criterion for assessing the effectiveness of RT and the recovery period.

Keywords: 
scanning electron microscopy • cervical cancer • extracellular vesicle • nanoparticle
References: 
  1. Mamaeva SN, Maksimov GV, Antonov SR, Neustroev EP, Kononova IV, Zakharova, et al. Studying of erythrocytes of blood during radiation therapy in cases of cancer of neck of an uterus with application of methods of medical physics and nanobiotechnologies. AIP Conference Proceedings 2041, 050016 (2018); doi: 0.1063/1.5079385.
  2. Mamaeva SN, Kononova IV, Ruzhansky M, Nikiforov PV, Nikolaevа NA; Pavlov AN, et al. Using Scanning Electron Microscopy and Atomic Force Microscopy to Study the Formation of Nanoparticles on Red Blood Cell Surface in Cervical Cancer Patients. International Journal of Biomedicine. 2020;10(1):70-75. doi: 10.21103/Article10(1)_OA12.
  3. Kim HK, Song KS, Park YS, Kang YH, Lee YJ, Lee KR, et al. Elevated levels of circulating platelet microparticles, VEGF, IL-6 and RANTES in patients with gastric cancer: possible role of a metastasis predictor. Eur J Cancer. 2003 Jan;39(2):184-91. doi: 10.1016/s0959-8049(02)00596-8. Erratum in: Eur J Cancer. 2003 Nov;39(17):2569.
  4. Liu J, Sun H, Wang X, Yu Q, Li S, Yu X, Gong W. Increased exosomal microRNA-21 and microRNA-146a levels in the cervicovaginal lavage specimens of patients with cervical cancer. Int J Mol Sci. 2014 Jan 8;15(1):758-73. doi: 10.3390/ijms15010758.
  5. Jang SC, Kim SR, Yoon YJ, Park KS, Kim JH, Lee J, et al. YS. In vivo kinetic biodistribution of nano-sized outer membrane vesicles derived from bacteria. Small. 2015 Jan 27;11(4):456-61. doi: 10.1002/smll.201401803. 
  6. EL Andaloussi S, Mäger I, Breakefield XO, Wood MJ. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov. 2013 May;12(5):347-57. doi: 10.1038/nrd3978.
  7. Mangino G, Chiantore MV, Luliano M, Capriotti L, Accardi L, Bonito PD, et al. Role of Extracellular Vesicles in Human Papillomavirus-Induced Tumorigenesis. In: Saxena SK, editor. Current Perspectives in Human Papillomavirus. IntechOpen. 2018;5:1–21. doi: 10.5772/intechopen.80654.
  8. Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 2008 Jul;110(1):13-21. doi: 10.1016/j.ygyno.2008.04.033. Erratum in: Gynecol Oncol. 2010 Jan;116(1):153. 
  9. Keller S, König AK, Marmé F, Runz S, Wolterink S, Koensgen D, et al. Systemic presence and tumor-growth promoting effect of ovarian carcinoma released exosomes. Cancer Lett. 2009 Jun 8;278(1):73-81. doi: 10.1016/j.canlet.2008.12.028. 
  10. Chai H, Brown RE. Field effect in cancer-an update. Ann Clin Lab Sci. 2009 Fall;39(4):331-7. PMID: 19880759.
  11. Honegger A, Schilling D, Bastian S, Sponagel J, Kuryshev V, Sültmann H, et al. Dependence of intracellular and exosomal microRNAs on viral E6/E7 oncogene expression in HPV-positive tumor cells. PLoS Pathog. 2015 Mar 11;11(3):e1004712. doi: 10.1371/journal.ppat.1004712. 
  12. Li H, Chi X, Li R, Ouyang J, Chen Y. HIV-1-infected cell-derived exosomes promote the growth and progression of cervical cancer. Int J Biol Sci. 2019 Sep 7;15(11):2438-2447. doi: 10.7150/ijbs.38146.
  13. Al-Mayah A, Bright S, Chapman K, Irons S, Luo P, Carter D, et al. The non-targeted effects of radiation are perpetuated by exosomes. Mutat Res. 2015 Feb;772:38-45. doi: 10.1016/j.mrfmmm.2014.12.007. 
  14. Arscott WT, Tandle AT, Zhao S, Shabason JE, Gordon IK, Schlaff CD, et al. Ionizing radiation and glioblastoma exosomes: implications in tumor biology and cell migration. Transl Oncol. 2013 Dec 1;6(6):638-48. doi: 10.1593/tlo.13640.
  15. Mutschelknaus L, Peters C, Winkler K, Yentrapalli R, Heider T, Atkinson MJ, Moertl S. Exosomes Derived from Squamous Head and Neck Cancer Promote Cell Survival after Ionizing Radiation. PLoS One. 2016 Mar 23;11(3):e0152213. doi: 10.1371/journal.pone.0152213. 
  16. Mutschelknaus L, Azimzadeh O, Heider T, Winkler K, Vetter M, Kell R, et al. Radiation alters the cargo of exosomes released from squamous head and neck cancer cells to promote migration of recipient cells. Sci Rep. 2017 Sep 29;7(1):12423. doi: 10.1038/s41598-017-12403-6. 
  17. Snijders PJ, van den Brule AJ, Schrijnemakers HF, Snow G, Meijer CJ, Walboomers JM. The use of general primers in the polymerase chain reaction permits the detection of a broad spectrum of human papillomavirus genotypes. J Gen Virol. 1990;71 (1):173-81. doi: 10.1099/0022-1317-71-1-173. PMID: 2154534.
  18. de Roda Husman AM, Walboomers JM, van den Brule AJ, Meijer CJ, Snijders PJ. The use of general primers GP5 and GP6 elongated at their 3' ends with adjacent highly conserved sequences improves human papillomavirus detection by PCR. J Gen Virol. 1995;76(4):1057-62. doi: 10.1099/0022-1317-76-4-1057. PMID: 9049358.
  19. Bosch FX, Manos MM, Muñoz N, Sherman M, Jansen AM, Peto J, Schiffman MH, Moreno V, Kurman R, Shah KV. Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. International biological study on cervical cancer (IBSCC) Study Group. J Natl Cancer Inst. 1995;87(11):796-802. doi: 10.1093/jnci/87.11.796. PMID: 7791229.
  20. Fuessel Haws AL, He Q, Rady PL, Zhang L, Grady J, Hughes TK, Stisser K, Konig R, Tyring SK. Nested PCR with the PGMY09/11 and GP5(+)/6(+) primer sets improves detection of HPV DNA in cervical samples. J Virol Methods. 2004;122(1):87-93. doi: 10.1016/j.jviromet.2004.08.007. PMID: 15488625.
  21. Cope JU, Hildesheim A, Schiffman MH, et al. Comparison of the hybrid capture tube test and PCR for detection of human papillomavirus DNA in cervical specimens. J Clin Microbiol. 1997;35(9):2262-2265. doi:10.1128/JCM.35.9.2262-2265.1997.
  22. Shah KV, Daniel RW, Simons JW, Vogelstein B. Investigation of colon cancers for human papillomavirus genomic sequences by polymerase chain reaction. J Surg Oncol. 1992;51(1):5-7. doi: 10.1002/jso.2930510104. PMID: 1325576.
  23. Conway MJ, Meyers C. Replication and assembly of human papillomaviruses. J Dent Res. 2009 Apr;88(4):307-17. doi: 10.1177/0022034509333446. 
  24. Buck CB, Cheng N, Thompson CD, Lowy DR, Steven AC, Schiller JT, Trus BL. Arrangement of L2 within the papillomavirus capsid. J Virol. 2008 Jun;82(11):5190-7. doi: 10.1128/JVI.02726-07.
  25. Schiller JT, Lowy DR. Understanding and learning from the success of prophylactic human papillomavirus vaccines. Nat Rev Microbiol. 2012 Oct;10(10):681-92. doi: 10.1038/nrmicro2872. 
  26. Doorbar J, Gallimore PH. Identification of proteins encoded by the L1 and L2 open reading frames of human papillomavirus 1a. J Virol. 1987 Sep;61(9):2793-9. doi: 10.1128/JVI.61.9.2793-2799.1987. 
  27. Klimov E, Sobolev V, Solov’ev AM,  Perlamutrov Yu, Korsunskaya I. Proteins and microRNA participating in papillomavirus imfection. RUDN Journal of Medicine. 2018;22:43-49. doi:10.22363/2313-0245-2018-22-1-43-49.
  28. WHO. Human papillomavirus. Available from: https://www.who.int/biologicals/vaccines/human_papillomavirus_HPV/en/
  29. Cooper GM. The Cell: A Molecular Approach. 2nd edition. Sunderland (MA): Sinauer Associates; 2000. Structure of the Plasma Membrane. Available from: https://www.ncbi.nlm.nih.gov/books/NBK9898/
  30. Hugel B, Martínez MC, Kunzelmann C, Freyssinet JM. Membrane microparticles: two sides of the coin. Physiology (Bethesda). 2005 Feb;20:22-7. doi: 10.1152/physiol.00029.2004.
  31. Doyle LM, Wang MZ. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells. 2019 Jul 15;8(7):727. doi: 10.3390/cells8070727.
  32. Meckes DG Jr, Raab-Traub N. Microvesicles and viral infection. J Virol. 2011 Dec;85(24):12844-54. doi: 10.1128/JVI.05853-11. 
  33. Osaki M, Okada F. Exosomes and Their Role in Cancer Progression. Yonago Acta Med. 2019 Jun 20;62(2):182-190. doi: 10.33160/yam.2019.06.002. 
  34. Meng X, Pan J, Sun S, Gon Z. Circulating exosomes and their cargos in blood as novel biomarkers for cancer. Translational Cancer Research. 2017;7(2):226-242. https://tcr.amegroups.com/article/view/16197.
  35. Hood JL, Pan H, Lanza GM, Wickline SA; Consortium for Translational Research in Advanced Imaging and Nanomedicine (C-TRAIN). Paracrine induction of endothelium by tumor exosomes. Lab Invest. 2009 Nov;89(11):1317-28. doi: 10.1038/labinvest.2009.94. 
  36. Kalluri R. The biology and function of exosomes in cancer. J Clin Invest. 2016 Apr 1;126(4):1208-15. doi: 10.1172/JCI81135. 
  37. Soung YH, Ford S, Zhang V, Chung J. Exosomes in Cancer Diagnostics. Cancers (Basel). 2017 Jan 12;9(1):8. doi: 10.3390/cancers9010008.
  38. Mizutani K, Terazawa R, Kameyama K, Kato T, Horie K, Tsuchiya T, et al. Isolation of prostate cancer-related exosomes. Anticancer Res. 2014 Jul;34(7):3419-23. 
  39. Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008 Dec;10(12):1470-6. doi: 10.1038/ncb1800. 
  40. Clayton A, Turkes A, Dewitt S, Steadman R, Mason MD, Hallett MB. Adhesion and signaling by B cell-derived exosomes: the role of integrins. FASEB J. 2004 Jun;18(9):977-9. doi: 10.1096/fj.03-1094fje.
  41. Fu Q, Zhang Q, Lou Y, Yang J, Nie G, Chen Q, et al. Primary tumor-derived exosomes facilitate metastasis by regulating adhesion of circulating tumor cells via SMAD3 in liver cancer. Oncogene. 2018 Nov;37(47):6105-6118. doi: 10.1038/s41388-018-0391-0. Epub 2018 Jul 10. Erratum in: Oncogene. 2019 Jul;38(28):5740-5741. 
  42. Fang DY, King HW, Li JY, Gleadle JM. Exosomes and the kidney: blaming the messenger. Nephrology (Carlton). 2013 Jan;18(1):1-10. doi: 10.1111/nep.12005.
  43. van Doormaal FF, Kleinjan A, Di Nisio M, Büller HR, Nieuwland R. Cell-derived microvesicles and cancer. Neth J Med. 2009 Jul-Aug;67(7):266-73.
  44. Mata-Rocha M, Rodríguez-Hernández RM, Chávez-Olmos P, Garrido E, Robles-Vázquez C, Aguilar-Ruiz S, et al. Presence of HPV DNA in extracellular vesicles from HeLa cells and cervical samples. Enferm Infecc Microbiol Clin. 2020 Apr;38(4):159-165. English, Spanish. doi: 10.1016/j.eimc.2019.06.011.
  45. Huang H, Zhu J, Fan L, Lin Q, Fu D, Wei B, Wei S. MicroRNA Profiling of Exosomes Derived from Red Blood Cell Units: Implications in Transfusion-Related Immunomodulation. Biomed Res Int. 2019 Jun 13;2019:2045915. doi: 10.1155/2019/2045915. 
  46. Harisa GI, Badran MM, Alanazi FK. Erythrocyte nanovesicles: Biogenesis, biological roles and therapeutic approach: Erythrocyte nanovesicles. Saudi Pharm J. 2017 Jan;25(1):8-17. doi: 10.1016/j.jsps.2015.06.010. 
  47. Danesh A, Inglis HC, Jackman RP, Wu S, Deng X, Muench MO, Heitman JW, Norris PJ. Exosomes from red blood cell units bind to monocytes and induce proinflammatory cytokines, boosting T-cell responses in vitro. Blood. 2014 Jan 30;123(5):687-96. doi: 10.1182/blood-2013-10-530469. 

Download Article
Received December 22, 2020.
Accepted February 25, 2021.
©2021 International Medical Research and Development Corporation.