Frequency of the Risk A Allele of rs17713054 Localized in the 3p21.31 COVID-19 Risk Locus in the Yakut Population

Nadezhda I. Pavlova, Aleksey A. Bochurov, Vladislav A. Alekseev, Aleksandra T. Diakonova, Vladimir V. Dodokhov, Khariton A. Kurtanov

 
International Journal of Biomedicine. 2022;12(1):155-159.
DOI: 10.21103/Article12(1)_OA19
Originally published March 10, 2022

Abstract: 

Background: Genome-wide association studies identified the region of chromosome 3p21.31 as having the strongest association with the severe COVID-19 and susceptibility to SARS-CoV-2 infection. The aim of our study was to investigate the frequency of the risk A allele of rs17713054 localized in the 3p21.31 COVID-19 risk locus in Yakuts.
Methods and Results: A total of 382 DNA samples from healthy Yakut volunteers (184 men and 198 women; the average age of 41.8±0.05 years) were examined. Our results show that the frequency of the risk A allele of the rs17713054 SNP in the Yakut population occurs at a frequency of 2% and generally corresponds to the frequency of East Asian populations (from 0% to 2%), geographically close to the Yakuts and belonging to the same Mongoloid race.

Keywords: 
SARS-CoV-2 • rs17713054 • epithelial-mesenchymal transition • leucine zipper transcription factor like 1
References: 
  1. Marini JJ, Hotchkiss JR, Broccard AF. Bench-to-bedside review: microvascular and airspace linkage in ventilator-induced lung injury. Crit Care. 2003 Dec;7(6):435-44. doi: 10.1186/cc2392. 
  2. Levi M, Thachil J, Iba T, Levy JH. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020 Jun;7(6):e438-e440. doi: 10.1016/S2352-3026(20)30145-9. 
  3. Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020 May 2;395(10234):1417-1418. doi: 10.1016/S0140-6736(20)30937-5. 
  4. Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl J Med. 2020 Jul 9;383(2):120-128. doi: 10.1056/NEJMoa2015432. 
  5. He J, Cai S, Feng H, Cai B, Lin L, Mai Y, et al. Single-cell analysis reveals bronchoalveolar epithelial dysfunction in COVID-19 patients. Protein Cell. 2020 Sep;11(9):680-687. doi: 10.1007/s13238-020-00752-4. 
  6. Borczuk AC, Salvatore SP, Seshan SV, Patel SS, Bussel JB, Mostyka M, et al. COVID-19 pulmonary pathology: a multi-institutional autopsy cohort from Italy and New York City. Mod Pathol. 2020 Nov;33(11):2156-2168. doi: 10.1038/s41379-020-00661-1. 
  7. Severe Covid-19 GWAS Group, Ellinghaus D, Degenhardt F, Bujanda L, Buti M, Albillos A, Invernizzi P, et al. Genomewide Association Study of Severe Covid-19 with Respiratory Failure. N Engl J Med. 2020 Oct 15;383(16):1522-1534. doi: 10.1056/NEJMoa2020283. 
  8.  Pairo-Castineira E, Clohisey S, Klaric L, Bretherick AD, Rawlik K, Pasko D, et al.; GenOMICC Investigators; ISARIC4C Investigators; COVID-19 Human Genetics Initiative; 23andMe Investigators; BRACOVID Investigators; Gen-COVID Investigators, Shen X, Ponting CP, Fawkes A, Tenesa A, Caulfield M, Scott R, Rowan K, Murphy L, Openshaw PJM, Semple MG, Law A, Vitart V, Wilson JF, Baillie JK. Genetic mechanisms of critical illness in COVID-19. Nature. 2021 Mar;591(7848):92-98. doi: 10.1038/s41586-020-03065-y. 
  9. COVID-19 Host Genetics Initiative. Mapping the human genetic architecture of COVID-19. Nature. 2021 Dec;600(7889):472-477. doi: 10.1038/s41586-021-03767-x.
  10. Downes DJ, Cross AR, Hua P, Roberts N, Schwessinger R, Cutler AJ, et al.; COvid-19 Multi-omics Blood ATlas (COMBAT) Consortium, Gill DR, Hyde SC, Knight JC, Todd JA, Sansom SN, Issa F, Davies JOJ, Hughes JR. Identification of LZTFL1 as a candidate effector gene at a COVID-19 risk locus. Nat Genet. 2021 Nov;53(11):1606-1615. doi: 10.1038/s41588-021-00955-3. 
  11. NCBI Resources. LZTFL1 leucine zipper transcription factor like 1 [Homo sapiens (human)]. Available from: https://www.ncbi.nlm.nih.gov/gene/54585
  12. Ramirez Moreno M, Stempor PA, Bulgakova NA. Interactions and Feedbacks in E-Cadherin Transcriptional Regulation. Front Cell Dev Biol. 2021 Jun 28;9:701175. doi: 10.3389/fcell.2021.701175.
  13. Wei Q, Zhou W, Wang W, Gao B, Wang L, Cao J, Liu ZP. Tumor-suppressive functions of leucine zipper transcription factor-like 1. Cancer Res. 2010 Apr 1;70(7):2942-50. doi: 10.1158/0008-5472.CAN-09-3826. 
  14.  Promchan K, Natarajan V. Leucine zipper transcription factor-like 1 binds adaptor protein complex-1 and 2 and participates in trafficking of transferrin receptor 1. PLoS One. 2020 Jan 2;15(1):e0226298. doi: 10.1371/journal.pone.0226298. 
  15. Starks RD, Beyer AM, Guo DF, Boland L, Zhang Q, Sheffield VC, Rahmouni K. Regulation of Insulin Receptor Trafficking by Bardet Biedl Syndrome Proteins. PLoS Genet. 2015 Jun 23;11(6):e1005311. doi: 10.1371/journal.pgen.1005311. 
  16. Wei Q, Gu YF, Zhang QJ, Yu H, Peng Y, Williams KW, Wang R, Yu K, Liu T, Liu ZP. Lztfl1/BBS17 controls energy homeostasis by regulating the leptin signaling in the hypothalamic neurons. J Mol Cell Biol. 2018 Oct 1;10(5):402-410. doi: 10.1093/jmcb/mjy022. 
  17. Seo S, Zhang Q, Bugge K, Breslow DK, Searby CC, Nachury MV, Sheffield VC. A novel protein LZTFL1 regulates ciliary trafficking of the BBSome and Smoothened. PLoS Genet. 2011 Nov;7(11):e1002358. doi: 10.1371/journal.pgen.1002358. 
  18. Ravindra NG, Alfajaro MM, Gasque V, Huston NC, Wan H, Szigeti-Buck K, et al.  Single-cell longitudinal analysis of SARS-CoV-2 infection in human airway epithelium identifies target cells, alterations in gene expression, and cell state changes. PLoS Biol. 2021 Mar 17;19(3):e3001143. doi: 10.1371/journal.pbio.3001143. 
  19. Reference SNP (rs) Report (rs1773054). Available from: https://www.ncbi.nlm.nih.gov/snp/rs17713054?horizontal_tab=true
  20. Nafilyan V, Islam N, Mathur R, Ayoubkhani D, Banerjee A, Glickman M, Humberstone B, Diamond I, Khunti K. Ethnic differences in COVID-19 mortality during the first two waves of the Coronavirus Pandemic: a nationwide cohort study of 29 million adults in England. Eur J Epidemiol. 2021 Jun;36(6):605-617. doi: 10.1007/s10654-021-00765-1. 

Download Article
Received January 30, 2022.
Accepted March 8, 2022.
©2022 International Medical Research and Development Corporation.