Mast Cells as the Target of the Biological Effects of Molecular Hydrogen in the Specific Tissue Microenvironment

Dmitry A. Atiakshin, Victoria V. Shishkina, Dmitry I. Esaulenko, Evgeniy S. Ovsyannikov, Lyubov N. Antakova, Olga A. Gerasimova, Tatiana V. Samoilenko, Pavel Yu. Andreev, Sara T. Magerramova, Sofia A. Budnevskaya

 
International Journal of Biomedicine. 2022;12(2):183-187.
DOI: 10.21103/Article12(2)_RA2
Originally published June 5, 2022

Abstract: 

Mast cells (MCs) as key players in the development of both physiological and pathological processes in the organism can form a specific tissue microenvironment. Having a rich secretion of biologically active substances, MCs can secrete tryptase and/or chymase and thereby participate in the regulation of processes such as inflammation, neoangiogenesis, allergic reactions, and oncogenesis. Reactive oxygen intermediates (ROI) play an essential role in regulation of MC degranulation, shown in vitro and in vivo models. Application of molecular hydrogen as a substance with antioxidant characteristics pathogenically appears to be an important mechanism decreasing MC secretory activity, and, as a consequence, a novel option to reduce an inflammatory background in the specific tissue microenvironment.

Keywords: 
mast cell • tryptase • chymase • specific tissue microenvironment • molecular hydrogen
References: 
  1. Krystel-Whittemore M, Dileepan KN, Wood JG. Mast Cell: A Multi-Functional Master Cell. Front Immunol. 2016 Jan 6;6:620. doi: 10.3389/fimmu.2015.00620. 
  2. Atiakshin D, Buchwalow I, Samoilova V, Tiemann M. Tryptase as a polyfunctional component of mast cells. Histochem Cell Biol. 2018 May;149(5):461-477. doi: 10.1007/s00418-018-1659-8. 
  3. Redegeld FA, Yu Y, Kumari S, Charles N, Blank U. Non-IgE mediated mast cell activation. Immunol Rev. 2018 Mar;282(1):87-113. doi: 10.1111/imr.12629. 
  4. Robida PA, Puzzovio PG, Pahima H, Levi-Schaffer F, Bochner BS. Human eosinophils and mast cells: Birds of a feather flock together. Immunol Rev. 2018 Mar;282(1):151-167. doi: 10.1111/imr.12638. 
  5. Rönnberg E, Melo FR, Pejler G. Mast cell proteoglycans. J Histochem Cytochem. 2012 Dec;60(12):950-62. doi: 10.1369/0022155412458927.
  6. Wernersson S, Pejler G. Mast cell secretory granules: armed for battle. Nat Rev Immunol. 2014 Jul;14(7):478-94. doi: 10.1038/nri3690.
  7. Mukai K, Tsai M, Saito H, Galli SJ. Mast cells as sources of cytokines, chemokines, and growth factors. Immunol Rev. 2018 Mar;282(1):121-150. doi: 10.1111/imr.12634. 
  8. Blank U, Madera-Salcedo IK, Danelli L, Claver J, Tiwari N, Sánchez-Miranda E, Vázquez-Victorio G, Ramírez-Valadez KA, Macias-Silva M, González-Espinosa C. Vesicular trafficking and signaling for cytokine and chemokine secretion in mast cells. Front Immunol. 2014 Sep 22;5:453. doi: 10.3389/fimmu.2014.00453. 
  9. Vukman KV, Försönits A, Oszvald Á, Tóth EÁ, Buzás EI. Mast cell secretome: Soluble and vesicular components. Semin Cell Dev Biol. 2017 Jul;67:65-73. doi: 10.1016/j.semcdb.2017.02.002.
  10.  Atiakshin DA, Shishkina VV. Mast cells effect on the condition of skin collagen fibers in microgravity conditions. AIP Conference Proceedings 2318, 160003(2021). doi: 10.1063/5.0036003
  11. Cosentino-Gomes D, Rocco-Machado N, Meyer-Fernandes JR. Cell signaling through protein kinase C oxidation and activation. Int J Mol Sci. 2012;13(9):10697-721. doi: 10.3390/ijms130910697.
  12. Holmström KM, Finkel T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol. 2014 Jun;15(6):411-21. doi: 10.1038/nrm3801.
  13. Suzuki Y, Yoshimaru T, Matsui T, Inoue T, Niide O, Nunomura S, Ra C. Fc epsilon RI signaling of mast cells activates intracellular production of hydrogen peroxide: role in the regulation of calcium signals. J Immunol. 2003 Dec 1;171(11):6119-27. doi: 10.4049/jimmunol.171.11.6119. 
  14. Yang B, Yang C, Wang P, Li J, Huang H, Ji Q, Liu J, Liu Z. Food allergen--induced mast cell degranulation is dependent on PI3K-mediated reactive oxygen species production and upregulation of store-operated calcium channel subunits. Scand J Immunol. 2013 Jul;78(1):35-43. doi: 10.1111/sji.12062. 
  15. Suzuki Y, Yoshimaru T, Inoue T, Niide O, Ra C. Role of oxidants in mast cell activation. Chem Immunol Allergy. 2005;87:32-42. doi: 10.1159/000087569.
  16. Škulj S, Brkljača Z, Kreiter J, Pohl EE, Vazdar M. Molecular Dynamics Simulations of Mitochondrial Uncoupling Protein 2. Int J Mol Sci. 2021 Jan 26;22(3):1214. doi: 10.3390/ijms22031214. 
  17. Vozza A, Parisi G, De Leonardis F, Lasorsa FM, Castegna A, Amorese D, Marmo R, Calcagnile VM, Palmieri L, Ricquier D, Paradies E, Scarcia P, Palmieri F, Bouillaud F, Fiermonte G. UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation. Proc Natl Acad Sci U S A. 2014 Jan 21;111(3):960-5. doi: 10.1073/pnas.1317400111. 
  18. Trenker M, Malli R, Fertschai I, Levak-Frank S, Graier WF. Uncoupling proteins 2 and 3 are fundamental for mitochondrial Ca2+ uniport. Nat Cell Biol. 2007 Apr;9(4):445-452. doi: 10.1038/ncb1556. Epub 2007 Mar 11. Erratum in: Nat Cell Biol. 2008 Nov;10(11):1371. 
  19. Mohr FC, Fewtrell C. The relative contributions of extracellular and intracellular calcium to secretion from tumor mast cells. Multiple effects of the proton ionophore carbonyl cyanide m-chlorophenylhydrazone. J Biol Chem. 1987 Aug 5;262(22):10638-43. 
  20. Korshunov SS, Skulachev VP, Starkov AA. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 1997 Oct 13;416(1):15-8. doi: 10.1016/s0014-5793(97)01159-9. 
  21. Weatherly LM, Shim J, Hashmi HN, Kennedy RH, Hess ST, Gosse JA. Antimicrobial agent triclosan is a proton ionophore uncoupler of mitochondria in living rat and human mast cells and in primary human keratinocytes. J Appl Toxicol. 2016 Jun;36(6):777-89. doi: 10.1002/jat.3209. 
  22. Zhang B, Alysandratos KD, Angelidou A, Asadi S, Sismanopoulos N, Delivanis DA, Weng Z, Miniati A, Vasiadi M, Katsarou-Katsari A, Miao B, Leeman SE, Kalogeromitros D, Theoharides TC. Human mast cell degranulation and preformed TNF secretion require mitochondrial translocation to exocytosis sites: relevance to atopic dermatitis. J Allergy Clin Immunol. 2011 Jun;127(6):1522-31.e8. doi: 10.1016/j.jaci.2011.02.005. 
  23. Pletjushkina OY, Lyamzaev KG, Popova EN, Nepryakhina OK, Ivanova OY, Domnina LV, Chernyak BV, Skulachev VP. Effect of oxidative stress on dynamics of mitochondrial reticulum. Biochim Biophys Acta. 2006 May-Jun;1757(5-6):518-24. doi: 10.1016/j.bbabio.2006.03.018. 
  24. Wu S, Zhou F, Zhang Z, Xing D. Mitochondrial oxidative stress causes mitochondrial fragmentation via differential modulation of mitochondrial fission-fusion proteins. FEBS J. 2011 Apr;278(6):941-54. doi: 10.1111/j.1742-4658.2011.08010.x. 
  25. Sena LA, Chandel NS. Physiological roles of mitochondrial reactive oxygen species. Mol Cell. 2012 Oct 26;48(2):158-67. doi: 10.1016/j.molcel.2012.09.025.
  26. Csordás G, Hajnóczky G. SR/ER-mitochondrial local communication: calcium and ROS. Biochim Biophys Acta. 2009 Nov;1787(11):1352-62. doi: 10.1016/j.bbabio.2009.06.004. 
  27. Song MY, Makino A, Yuan JX. Role of reactive oxygen species and redox in regulating the function of transient receptor potential channels. Antioxid Redox Signal. 2011 Sep 15;15(6):1549-65. doi: 10.1089/ars.2010.3648.
  28. Waypa GB, Marks JD, Mack MM, Boriboun C, Mungai PT, Schumacker PT. Mitochondrial reactive oxygen species trigger calcium increases during hypoxia in pulmonary arterial myocytes. Circ Res. 2002 Oct 18;91(8):719-26. doi: 10.1161/01.res.0000036751.04896.f1. 
  29. Hamanaka RB, Chandel NS. Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci. 2010 Sep;35(9):505-13. doi: 10.1016/j.tibs.2010.04.002.
  30. Ostman A, Frijhoff J, Sandin A, Böhmer FD. Regulation of protein tyrosine phosphatases by reversible oxidation. J Biochem. 2011 Oct;150(4):345-56. doi: 10.1093/jb/mvr104.
  31. Mast Cells. Methods and Protocols. Second Edition. Edited by M.R. Hughes, K.M. McNagny. Springer Science + Business Media, New York, NY, USA.2015, pp. 540. 
  32. González-Pacheco FR, Caramelo C, Castilla MA, Deudero JJ, Arias J, Yagüe S, Jiménez S, Bragado R, Alvarez-Arroyo MV. Mechanism of vascular smooth muscle cells activation by hydrogen peroxide: role of phospholipase C gamma. Nephrol Dial Transplant. 2002 Mar;17(3):392-8. doi: 10.1093/ndt/17.3.392.
  33. Jang JY, Min JH, Chae YH, Baek JY, Wang SB, Park SJ, Oh GT, Lee SH, Ho YS, Chang TS. Reactive oxygen species play a critical role in collagen-induced platelet activation via SHP-2 oxidation. Antioxid Redox Signal. 2014 Jun 1;20(16):2528-40. doi: 10.1089/ars.2013.5337.
  34. Son Y, Cheong YK, Kim NH, Chung HT, Kang DG, Pae HO. Mitogen-Activated Protein Kinases and Reactive Oxygen Species: How Can ROS Activate MAPK Pathways? J Signal Transduct. 2011;2011:792639. doi: 10.1155/2011/792639. 
  35. Karin M, Takahashi T, Kapahi P, Delhase M, Chen Y, Makris C, Rothwarf D, Baud V, Natoli G, Guido F, Li N. Oxidative stress and gene expression: the AP-1 and NF-kappaB connections. Biofactors. 2001;15(2-4):87-9. doi: 10.1002/biof.5520150207. 
  36. Ohta S. Molecular hydrogen as a novel antioxidant: overview of the advantages of hydrogen for medical applications. Methods Enzymol. 2015;555:289-317. doi: 10.1016/bs.mie.2014.11.038. 
  37. Kura B, Bagchi AK, Singal PK, Barancik M, LeBaron TW, Valachova K, Šoltés L, Slezák J. Molecular hydrogen: potential in mitigating oxidative-stress-induced radiation injury 1. Can J Physiol Pharmacol. 2019 Apr;97(4):287-292. doi: 10.1139/cjpp-2018-0604. 
  38. Hu Q, Zhou Y, Wu S, Wu W, Deng Y, Shao A. Molecular hydrogen: A potential radioprotective agent. Biomed Pharmacother. 2020 Oct;130:110589. doi: 10.1016/j.biopha.2020.110589.

Download Article
Received March 5, 2022.
Accepted April 11, 2022.
©2022 International Medical Research and Development Corporation.