Oxidized Low-Density Lipoprotein and its Atherogenic Potential

Harish Rangareddy, Shashidhar Kurpad Nagaraj, Soumya Narayanaswamy

International Journal of Biomedicine. 2022;12(3):339-343.
DOI: 10.21103/Article12(3)_RA2
Originally published September 5, 2022


The emergence of oxidized low-density lipoprotein (OxLDL) is crucial for the progression of cardiovascular diseases (CVD) linked to atherosclerosis. OxLDL stimulates endothelial activation and smooth muscle proliferation and has an atherosclerotic-promoting effect. The measurement of OxLDL correlates with the presence of CVD and may be a prognostic marker for future health outcomes. Circulating OxLDLs can be used as biomarkers since their levels rise in patients with advanced atherosclerosis. Immunological methods have proven to be very useful methodologies. Anti-OxLDL monoclonal antibodies have been developed that bind strongly to OxLDL and are used in ELISA for OxLDL measurements. Routine inclusion of OxLDL estimation in an at-risk population can help the clinicians understand the disease initiation and progression and improve early intervention and management.

oxidized LDL • oxidative stress • atherosclerosis • ELISA
  1. Hua J, Malinski T. Variable Effects Of LDL Subclasses Of Cholesterol On Endothelial Nitric Oxide/Peroxynitrite Balance - The Risks And Clinical Implications For Cardiovascular Disease. Int J Nanomedicine. 2019 Nov 18;14:8973-8987. doi: 10.2147/IJN.S223524.
  2. Hartley A, Haskard D, Khamis R. Oxidized LDL and anti-oxidized LDL antibodies in atherosclerosis - Novel insights and future directions in diagnosis and therapy. Trends Cardiovasc Med. 2019 Jan;29(1):22-26. doi: 10.1016/j.tcm.2018.05.010. 
  3. Lara-Guzmán OJ, Gil-Izquierdo Á, Medina S, Osorio E, Álvarez-Quintero R, Zuluaga N, Oger C, Galano JM, Durand T, Muñoz-Durango K. Oxidized LDL triggers changes in oxidative stress and inflammatory biomarkers in human macrophages. Redox Biol. 2018 May;15:1-11. doi: 10.1016/j.redox.2017.11.017. 
  4. Jürgens G, Hoff HF, Chisolm III GM, Esterbauer H. Modification of human serum low density lipoprotein by oxidation—characterization and pathophysiological implications. Chemistry and physics of lipids. 1987 Nov 1;45(2-4):315-336. doi: 10.1016/0009-3084(87)90070-3
  5. Feingold KR. Introduction to Lipids and Lipoproteins. 2021 Jan 19. In: Feingold KR, Anawalt B, Boyce A, Chrousos G, de Herder WW, Dhatariya K, Dungan K, Hershman JM, Hofland J, Kalra S, Kaltsas G, Koch C, Kopp P, Korbonits M, Kovacs CS, Kuohung W, Laferrère B, Levy M, McGee EA, McLachlan R, Morley JE, New M, Purnell J, Sahay R, Singer F, Sperling MA, Stratakis CA, Trence DL, Wilson DP, editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000–. PMID: 26247089.
  6. Brown MS, Goldstein JL. Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu Rev Biochem. 1983;52:223-61. doi: 10.1146/annurev.bi.52.070183.001255. 
  7. Yang X, Li Y, Li Y, Ren X, Zhang X, Hu D, Gao Y, Xing Y, Shang H. Oxidative Stress-Mediated Atherosclerosis: Mechanisms and Therapies. Front Physiol. 2017 Aug 23;8:600. doi: 10.3389/fphys.2017.00600. 
  8. Steinbrecher UP, Witztum JL, Parthasarathy S, Steinberg D. Decrease in reactive amino groups during oxidation or endothelial cell modification of LDL. Correlation with changes in receptor-mediated catabolism. Arteriosclerosis. 1987 Mar-Apr;7(2):135-43. doi: 10.1161/01.atv.7.2.135. 
  9. Li H, Cao Z, Wang L, Liu C, Lin H, Tang Y, Yao P. Macrophage Subsets and Death Are Responsible for Atherosclerotic Plaque Formation. Frontiers in Immunology. 2022 Jan 1;13: 843712. doi: 10.3389/fimmu.2022.843712
  10. Kattoor AJ, Kanuri SH, Mehta JL. Role of Ox-LDL and LOX-1 in Atherogenesis. Curr Med Chem. 2019;26(9):1693-1700. doi: 10.2174/0929867325666180508100950. 
  11. Madonna R, Balistreri CR, De Rosa S, Muscoli S, Selvaggio S, Selvaggio G, Ferdinandy P, De Caterina R. Impact of Sex Differences and Diabetes on Coronary Atherosclerosis and Ischemic Heart Disease. J Clin Med. 2019 Jan 16;8(1):98. doi: 10.3390/jcm8010098.
  12. Mantle D, Dybring A. Bioavailability of coenzyme Q10: An overview of the absorption process and subsequent metabolism. Antioxidants. 2020 May; 9(5):386. doi: 10.3390/antiox9050386
  13. Marshall WJ. Lipids and lipoproteins. Clin Chem. London: Mosby; 1995.
  14. Lopes-Virella MF, Virella G. Pathogenic role of modified LDL antibodies and immune complexes in atherosclerosis. J Atheroscler Thromb. 2013;20(10):743-54. doi: 10.5551/jat.19281. 
  15. Witztum JL, Steinberg D. Role of oxidized low density lipoprotein in atherogenesis. The Journal of clinical investigation. 1991 Dec 1;88(6):1785-1792. doi: 10.1172/JCI115499
  16. Tribble DL, Rizzo M, Chait A, Lewis DM, Blanche PJ, Krauss RM. Enhanced oxidative susceptibility and reduced antioxidant content of metabolic precursors of small, dense low-density lipoproteins. Am J Med. 2001 Feb 1;110(2):103-10. doi: 10.1016/s0002-9343(00)00700-2.
  17. Ivanova EA, Myasoedova VA, Melnichenko AA, Grechko AV, Orekhov AN. Small Dense Low-Density Lipoprotein as Biomarker for Atherosclerotic Diseases. Oxid Med Cell Longev. 2017;2017:1273042. doi: 10.1155/2017/1273042. 
  18. Khatana C, Saini NK, Chakrabarti S, Saini V, Sharma A, Saini RV, Saini AK. Mechanistic Insights into the Oxidized Low-Density Lipoprotein-Induced Atherosclerosis. Oxid Med Cell Longev. 2020 Sep 15;2020:5245308. doi: 10.1155/2020/5245308. 
  19. Ojo OO, Leake DS. Vitamins E and C do not effectively inhibit low density lipoprotein oxidation by ferritin at lysosomal pH. Free Radical Research. 2021 Aug 16; 55: 525-534. doi: https://doi.org/10.1080/10715762.2021.1964494
  20. Mertens A, Holvoet P. Oxidized LDL and HDL: antagonists in atherothrombosis. FASEB J. 2001 Oct;15(12):2073-84. doi: 10.1096/fj.01-0273rev.
  21. Ferns GA, Lamb DJ, Taylor A. The possible role of copper ions in atherogenesis: the Blue Janus. Atherosclerosis. 1997 Sep;133(2):139-52. doi: 10.1016/s0021-9150(97)00130-5. 
  22. Mazur A, Gueux E, Bureau I, Feillet-Coudray C, Rock E, Rayssiguier Y. Copper deficiency and lipoprotein oxidation. Atherosclerosis. 1998 Apr;137(2):443-5. doi: 10.1016/s0021-9150(97)00301-8. 
  23. Sullivan JL. Iron in arterial plaque: modifiable risk factor for atherosclerosis. Biochim Biophys Acta. 2009 Jul;1790(7):718-23. doi: 10.1016/j.bbagen.2008.06.005. 
  24. Zingg JM, Vlad A, Ricciarelli R. Oxidized LDLs as Signaling Molecules. Antioxidants (Basel). 2021 Jul 26;10(8):1184. doi: 10.3390/antiox10081184.
  25. Essler M, Retzer M, Bauer M, Heemskerk JW, Aepfelbacher M, Siess W. Mildly oxidized low density lipoprotein induces contraction of human endothelial cells through activation of Rho/Rho kinase and inhibition of myosin light chain phosphatase. J Biol Chem. 1999 Oct 22;274(43):30361-4. doi: 10.1074/jbc.274.43.30361. 
  26. Retzer M, Siess W, Essler M. Mildly oxidised low density lipoprotein induces platelet shape change via Rho-kinase-dependent phosphorylation of myosin light chain and moesin. FEBS Lett. 2000 Jan 21;466(1):70-4. doi: 10.1016/s0014-5793(99)01762-7. 
  27. Linton MF, Yancey PG, Davies SS, Jerome WG, Linton EF, Song WL, Doran AC, Vickers KC. The Role of Lipids and Lipoproteins in Atherosclerosis. 2019 Jan 3. In: Feingold KR, Anawalt B, Boyce A, Chrousos G, de Herder WW, Dhatariya K, Dungan K, Hershman JM, Hofland J, Kalra S, Kaltsas G, Koch C, Kopp P, Korbonits M, Kovacs CS, Kuohung W, Laferrère B, Levy M, McGee EA, McLachlan R, Morley JE, New M, Purnell J, Sahay R, Singer F, Sperling MA, Stratakis CA, Trence DL, Wilson DP, editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000–. PMID: 26844337.
  28. Jürgens G, Hoff HF, Chisolm GM 3rd, Esterbauer H. Modification of human serum low density lipoprotein by oxidation--characterization and pathophysiological implications. Chem Phys Lipids. 1987 Nov-Dec;45(2-4):315-36. doi: 10.1016/0009-3084(87)90070-3.
  29. Greaves DR, Gough PJ, Gordon S. Recent progress in defining the role of scavenger receptors in lipid transport, atherosclerosis and host defence. Curr Opin Lipidol. 1998 Oct;9(5):425-32. doi: 10.1097/00041433-199810000-00006. 
  30. van Berkel TJ, Fluiter K, van Velzen AG, Vogelezang CJ, Ziere GJ. LDL receptor-independent and -dependent uptake of lipoproteins. Atherosclerosis. 1995 Dec;118 Suppl:S43-50. 
  31. Di Pietro N, Formoso G, Pandolfi A. Physiology and pathophysiology of oxLDL uptake by vascular wall cells in atherosclerosis. Vascul Pharmacol. 2016 Sep;84:1-7. doi: 10.1016/j.vph.2016.05.013.
  32. Levitan I, Volkov S, Subbaiah PV. Oxidized LDL: diversity, patterns of recognition, and pathophysiology. Antioxid Redox Signal. 2010 Jul 1;13(1):39-75. doi: 10.1089/ars.2009.2733.
  33. Greig FH, Kennedy S, Spickett CM. Physiological effects of oxidized phospholipids and their cellular signaling mechanisms in inflammation. Free Radic Biol Med. 2012 Jan 15;52(2):266-80. doi: 10.1016/j.freeradbiomed.2011.10.481.
  34. Maiolino G, Rossitto G, Caielli P, Bisogni V, Rossi GP, Calò LA. The role of oxidized low-density lipoproteins in atherosclerosis: the myths and the facts. Mediators Inflamm. 2013;2013:714653. doi: 10.1155/2013/714653. 
  35. Miller YI, Chang MK, Binder CJ, Shaw PX, Witztum JL. Oxidized low density lipoprotein and innate immune receptors. Curr Opin Lipidol. 2003 Oct;14(5):437-45. doi: 10.1097/00041433-200310000-00004. 
  36. Selley ML, Bartlett MR, Czeti AL, Ardlie NG. The role of (E)-4-hydroxy-2-nonenal in platelet activation by low density lipoprotein and iron. Atherosclerosis. 1998 Sep;140(1):105-12. doi: 10.1016/s0021-9150(98)00123-3. 
  37. Chen R, Chen X, Salomon RG, McIntyre TM. Platelet activation by low concentrations of intact oxidized LDL particles involves the PAF receptor. Arterioscler Thromb Vasc Biol. 2009 Mar;29(3):363-71. doi: 10.1161/ATVBAHA.108.178731.
  38. Magwenzi S, Woodward C, Wraith KS, Aburima A, Raslan Z, Jones H, McNeil C, Wheatcroft S, Yuldasheva N, Febbriao M, Kearney M, Naseem KM. Oxidized LDL activates blood platelets through CD36/NOX2-mediated inhibition of the cGMP/protein kinase G signaling cascade. Blood. 2015 Apr 23;125(17):2693-703. doi: 10.1182/blood-2014-05-574491. 
  39. Wraith KS, Magwenzi S, Aburima A, Wen Y, Leake D, Naseem KM. Oxidized low-density lipoproteins induce rapid platelet activation and shape change through tyrosine kinase and Rho kinase-signaling pathways. Blood. 2013 Jul 25;122(4):580-9. doi: 10.1182/blood-2013-04-491688.
  40. Chawla A, Boisvert WA, Lee CH, Laffitte BA, Barak Y, Joseph SB, Liao D, Nagy L, Edwards PA, Curtiss LK, Evans RM, Tontonoz P. A PPAR gamma-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell. 2001 Jan;7(1):161-71. doi: 10.1016/s1097-2765(01)00164-2. 
  41. Zhu Y, Liao H, Xie X, Yuan Y, Lee TS, Wang N, Wang X, Shyy JY, Stemerman MB. Oxidized LDL downregulates ATP-binding cassette transporter-1 in human vascular endothelial cells via inhibiting liver X receptor (LXR). Cardiovasc Res. 2005 Dec 1;68(3):425-32. doi: 10.1016/j.cardiores.2005.07.003. 
  42. Rasheed A, Cummins CL. Beyond the Foam Cell: The Role of LXRs in Preventing Atherogenesis. Int J Mol Sci. 2018 Aug 7;19(8):2307. doi: 10.3390/ijms19082307. 
  43. Wang W, Hein TW, Zhang C, Zawieja DC, Liao JC, Kuo L. Oxidized low-density lipoprotein inhibits nitric oxide-mediated coronary arteriolar dilation by up-regulating endothelial arginase I. Microcirculation. 2011 Jan;18(1):36-45. doi: 10.1111/j.1549-8719.2010.00066.x. 
  44. Itabe H, Ueda M. Measurement of plasma oxidized low-density lipoprotein and its clinical implications. J Atheroscler Thromb. 2007 Feb;14(1):1-11. doi: 10.5551/jat.14.1. 
  45. Tsimikas S. Oxidized low-density lipoprotein biomarkers in atherosclerosis. Current atherosclerosis reports. 2006 Jan;8(1):55-61. doi:10.1007/s11883-006-0065-1
  46. Itabe H. Oxidized low-density lipoproteins: what is understood and what remains to be clarified. Biol Pharm Bull. 2003 Jan;26(1):1-9. doi: 10.1248/bpb.26.1. 
  47. Tan XW, Takenaka F, Takekawa H, Mastuura E. Rapid and specific detection of oxidized LDL/β2GPI complexes via facile lateral flow immunoassay. Heliyon. 2020 Jun 8;6(6):e04114. doi: 10.1016/j.heliyon.2020.e04114. 
  48. Kobayashi K, Matsuura E, Liu Q, Furukawa J, Kaihara K, Inagaki J, Atsumi T, Sakairi N, Yasuda T, Voelker DR, Koike T. A specific ligand for beta(2)-glycoprotein I mediates autoantibody-dependent uptake of oxidized low density lipoprotein by macrophages. J Lipid Res. 2001 May;42(5):697-709. 
  49. Sasaki T, Kobayashi K, Kita S, Kojima K, Hirano H, Shen L, Takenaka F, Kumon H, Matsuura E. In vivo distribution of single chain variable fragment (scFv) against atherothrombotic oxidized LDL/β2-glycoprotein I complexes into atherosclerotic plaques of WHHL rabbits: Implication for clinical PET imaging. Autoimmun Rev. 2017 Feb;16(2):159-167. doi: 10.1016/j.autrev.2016.12.007. 
  50. Le NA. Lipoprotein-associated oxidative stress: a new twist to the postprandial hypothesis. Int J Mol Sci. 2014 Dec 26;16(1):401-19. doi: 10.3390/ijms16010401.

Download Article
Received May 3, 2022.
Accepted June 23, 2022.
©2022 International Medical Research and Development Corporation.