The Role of Oxidative Stress and Changes in the Composition of the Gut Microbiota in the Genesis of Adolescent Obesity

Marina A. Darenskaya, Lyubov V. Rychkova, Natalya V. Semenova, Natalya L. Belkova, Lyubov I. Kolesnikova

 
International Journal of Biomedicine. 2022;12(3):344-348.
DOI: 10.21103/Article12(3)_RA3
Originally published September 5, 2022

Abstract: 

Studying the pathogenetic mechanisms in the formation and development of obesity in adolescence is essential due to its high prevalence. Obesity was found to be associated with chronic inflammation in adipose tissue, dyslipidemia, the development of oxidative stress (OS), microbiota composition disorder, and other factors. A consequence of the OS progression is the accumulation in the body of cytotoxic compounds, including endogenous aldehydes, acting as mediators of damage and provoking characteristic shifts in metabolism. Gut microbiota contributes significantly to the development of metabolic disorders and obesity by modeling the cascade of enzymatic reactions of the macroorganism, interacting with receptors directly and/or with its metabolites and signaling molecules. In this context, it may be relevant to investigate the significance of the interaction of these systems to substantiate personalized approaches to the prevention and treatment of adolescent obesity.

Keywords: 
obesity • adolescents • oxidative stress • antioxidants • microbiota • gut
References: 
  1. Spinelli A, Buoncristiano M, Kovacs VA, Yngve A, Spiroski I, Obreja G, et al. Prevalence of severe obesity among primary school children in 21 European countries. Obes Facts. 2019;12(2):244-258. doi: 10.1159/000500436.
  2. Kirk S, Armstrong S, King E, Trapp C, Grow M, Tucker J et al.  Establishment of the pediatric obesity weight evaluation registry: a national research collaborative for identifying the optimal assessment and treatment of pediatric obesity. Childhood Obesity. 2017;13(1):9-17. doi: 10.1089/chi.2016.0060.
  3. O'Connor TG, Williams J, Blair C, Gatzke-Kopp LM, Francis L, Willoughb MT. Predictors of developmental patterns of obesity in young children. Front. Pediatr. 2020;8:109. doi: 10.3389/fped.2020.00109.
  4. Heymsfield SB, Wadden TA. Mechanisms, Pathophysiology, and Management of Obesity. N Engl J Med. 2017;376:254-266. doi: 10.1056/NEJMra1514009
  5. Endalifer ML, Diress G. Epidemiology, Predisposing Factors, Biomarkers, and Prevention Mechanism of Obesity: A Systematic Review. J Obes. 2020 May 31;2020:6134362. doi: 10.1155/2020/6134362. PMID: 32566274; PMCID: PMC7281819.
  6. Zuo L, Prather ER, Stetskiv M, Garrison DE, Meade JR, Peace TI, Zhou T. Inflammation and oxidative stress in human diseases: from molecular mechanisms to novel treatments. Inter J Mol Sci. 2019;20(18):4472. doi: 10.3390/ijms20184472.
  7. Calcaterra V, Regalbuto C, Porri D, Pelizzo G, Mazzon E, Vinci F, et al. Inflammation in obesity-related complications in children: the protective effect of diet and its potential role as a therapeutic agent. Biomolecules. 2020;10(9):1324. doi: 10.3390/biom10091324.
  8. Filgueiras MS, Rocha NP, Novaes JF, Bressan J. Vitamin D status, oxidative stress, and inflammation in children and adolescents: A systematic review. Crit Rev Food Sci Nutr. 2020;60(4):660-669. doi: 10.1080/10408398.2018.1546671.
  9. Marseglia L, Manti S, D'Angelo G, Nicotera A, Parisi E, Di Rosa G, Gitto E, Arrigo T. Oxidative stress in obesity: a critical component in human diseases. Int J Mol Sci. 2014 Dec 26;16(1):378-400. doi: 10.3390/ijms16010378.
  10. Kolesnikova LI, Rychkova LV, Kolesnikov SI, Darenskaya MA, Gavrilova OA, Kravtsova OV, et al. [The evaluation of the lipid peroxidation system and antioxidant defense in adolescent boys with exogenously constitutive obesity with using the coefficient of oxidative stress]. Voprosy Pitaniia. 2018;87(1):28-34. doi: 10.24411/0042-8833-2018-10003. [Article in Russian].
  11. Darenskaya MA, Rychkova LV, Zhdanova LA, Grebenkina LA, Gavrilova OA, Osipova EV, et al. Oxidative stress assessment in different ethnic groups of girls with exogenous constitutional obesity complicated by non-alcoholic fatty liver disease. International Journal of Biomedicine. 2019;9(3):223-227. doi: 10.21103/Article9[3]_OA7.      
  12. Martini CN, Gabrielli M, Brandani JN, Vila Mdel C. Glyphosate Inhibits PPAR Gamma Induction and Differentiation of Preadipocytes and is able to Induce Oxidative Stress. J Biochem Mol Toxicol. 2016 Aug;30(8):404-13. doi: 10.1002/jbt.21804.
  13. Di Domenico M, Pinto F, Quagliuolo L, Contaldo M, Settembre G, Romano A, et al. The role of oxidative stress and hormones in controlling obesity. Frontiers in Endocrinology. 2019;10:540. doi: 10.3389/fendo.2019.00540.
  14. Epingeac ME, Gaman MA, Diaconu CC, Gad M, Gaman AM. The evaluation of oxidative stress levels in obesity. Rev Chim (Bucharest). 2019;70:2241-2244. doi: 10.4239/wjd.v11.i5.193.
  15. Kolesnikova LI, Rychkova LV, Kolesnikova LR, Darenskaya MA, Natyaganova LV, Grebenkina LA, et al. Сoupling of lipoperoxidation reactions with changes in arterial blood pressure in hypertensive ISIAH rats under conditions of chronic stress. Bulletin of Experimental Biology and Medicine. 2018;164(6):712-715. doi: 10.1007/s10517-018-4064-4073.
  16. Magdalena A, Pop PA. The role of antioxidants in the chemistry of oxidative stress: a review. Eur J Med Chem. 2015;97(5):55-74. doi: 10.1016/j.ejmech.2015.04.040.
  17. Mohd Mutalip S, Ab-Rahim S, Rajikin M. Vitamin E as an antioxidant in female reproductive health. Antioxidants. 2018;7(2):22. doi: 10.3390/antiox7020022.
  18. Kolesnikova LI, Darenskaya MA, Rychkova LV, Grebenkina LA, Semenova NV, Kolesnikov SI. [Lipids methabolism and antioxidant status in exogenous constitutional obesity in girls of Buryatia. Rossiyskiy Vestnik Perinatologii i Pediatrii]. 2021;66(1):80-86. doi:10.21508/1027-4065-2021-66-1-80-86. [Article in Russian].
  19. Sies H. Oxidative eustress and oxidative distress: Introductory remarks. In Oxidative Stress. Academic Press. 2020. doi: 10.1016/B978-0-12-818606-0.00001-8.
  20. Abenavoli L, Scarpellini E, Colica C, Boccuto L, Salehi B, Sharifi-Rad J, et al. Gut microbiota and obesity: a role for probiotics. Nutrients. 2019;11(11):2690. doi.org/10.3390/nu11112690.
  21. Cornejo-Pareja I, Muñoz-Garach A, Clemente-Postigo M, Tinahones FJ. Importance of gut microbiota in obesity. Eur J Clin Nutr. 2019 Jul;72(Suppl 1):26-37. doi: 10.1038/s41430-018-0306-8.
  22. Kawabata K, Yoshioka Y, Terao J. Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols. Molecules. 2019;24(2):370. doi: 10.3390/molecules24020370.
  23. Krishna KV, Malviya S, Bhattacharyya D, Malaviya A. Gut–Brain Axis: Role in Hunger and Satiety. In Probiotic Research in Therapeutics (pp. 1-27). Springer, Singapore, 2022. doi: 10.1371/journal.pone.0030696.
  24. Zhang CX, Wang HY, Chen TX. Interactions between Intestinal Microflora/Probiotics and the Immune System. Biomed Res Int. 2019 Nov 20;2019:6764919. doi: 10.1155/2019/6764919.
  25. Liu BN, Liu XT, Liang ZH, Wang JH. Gut microbiota in obesity. World Journal of Gastroenterology. 2021;27(25):3837. doi: 10.3748/wjg.v27.i25.3837.
  26. Diamant M, Blaak EE, de Vos WM. Do nutrient-gut-microbiota interactions play a role in human obesity, insulin resistance and type 2 diabetes? Obes. Rev. 2011;12:272-281. doi: 10.1111/j.1467-789X.2010.00797.x.
  27. Qiao Y, Sun J, Ding Y, Le G, Shi Y. Alterations of the gut microbiota in highfat diet mice is strongly linked to oxidative stress. Appl Microbiol Biotechnol. 2013;97:1689-1697. doi: 10.1007/s00253-012-4323-6.
  28. Qiao Y, Sun J, Xie Z, Shi Y, Le G. Propensity to high-fat diet-induced obesity in mice is associated with the indigenous opportunistic bacteria on the interior of Peyer’s patches. J Clin Biochem Nutr. 2014;55:120. doi: 10.3164/jcbn.14-38.
  29. Arutyunov GP, Kafarskaya LI, Pokrovsky YuA, Kostyukevich OI, Vlasenko VK, Chernaya ZA. [Intestinal biocenosis and the cardiovascular continuum]. Heart Failure. 2004;5(5):224-229. [Article in Russian].
  30. Vrieze A, van Nood E, Holleman F, Salojärvi J, Kootte RS, Bartelsman JF, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143:913-916. doi: 10.1053/j.gastro.2012.06.031.
  31. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: Human gut microbes associated with obesity. Nature. 2006;444:1022-1023. doi: 10.1038/4441022a.
  32. Jumpertz R, Le DS, Turnbaugh PJ, Trinidad C, Bogardus C, Gordon JI, Krakoff J. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am. J. Clin. Nutr. 2011;94:58-65. doi: 10.3945/ajcn.110.010132.
  33. Sies H. Glutathione and its role in cellular functions. Free Radic Biol Med. 1999;27:916-921. doi: 10.1016/S0891-5849(99)00177-X.
  34. Sun J, Qiao Y, Qi C, Jiang W, Xiao H, Shi Y, Le GW. High-fat-diet-induced obesity is associated with decreased antiinflammatory Lactobacillus reuteri sensitive to oxidative stress in mouse Peyer’s patches. Nutrition. 2016;32(2):265-272. doi: 10.1016/j.nut.2015.08.020.
  35. Million M, Maraninchi M, Henry M, Armougom F, Richet H, Carrieri P, et al. Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. Int J Obes. 2012;36:817-825. doi: 10.1038/ijo.2011.153.
  36. Million M, Angelakis E, Maraninchi M, Henry M, Giorgi R, Valero R, et al. Correlation between body mass index and gut concentrations of Lactobacillus reuteri, Bifidobacterium animalis, Methanobrevibacter smithii and Escherichia coli. Int J Obes. 2013;37:1460-1466. doi: 10.1038/ijo.2013.20.
  37. Erhardt JG, Lim SS, Bode JC, Bode C. A diet rich in fat and poor in dietary fiber increases the in vitro formation of reactive oxygen species in human feces. J Nutr. 1997;127:706-709. doi: 10.1093/jn/127.5.706.
  38. Djuric Z, Lewis SM, Lu MH, Mayhugh M, Tang N, Hart RW. Effect of varying dietary fat levels on rat growth and oxidative DNA damage. Nutr Cancer. 2001;39:214-219. doi: 10.1207/S15327914nc392_9.
  39. Sun J, Qiao Y, Qi C, Jiang W, Xiao H, Shi Y, Le GW. High-fat-diet-induced obesity is associated with decreased antiinflammatory Lactobacillus reuteri sensitive to oxidative stress in mouse Peyer’s patches. Nutrition. 2016;32(2):265-272. doi: 10.1016/j.nut.2015.08.020.
  40. Darenskaya MA, Rychkova LV, Kolesnikov SI, Kravtsova OV, Semenova NV, Brichagina AS, et al. Oxidative stress index levels in Asian adolescents with exogenous-constitutional obesity. International Journal of Biomedicine. 2022;12(1):142-146. doi: 10.21103/Article12(1)_OA16.
  41. Kolesnikova LI, Rychkova LV, Darenskaya MA, Gavrilova OA, Ayurova ZhG, Grebenkina LA, et al. [Peculiarities of pro- and antioxidant status in adolescents, representatives of two ethnic groups with exogenous-constitutional 1st-degree obesity]. Pediatriya - Zhurnal im G.N. Speranskogo. 2020;99(5):201-206. doi: 10.24110/0031-403X-2020-99-5-201-206. [Article in Russian].
  42. Darenskaya MA, Rychkova LV, Semenova NV, Kolesnikova LI, Kolesnikov SI. Parameters of lipid metabolism and antioxidant status in adolescent mongoloids with exogenous-constitutional obesity. Free Radical Biology & Medicine. 2020;159(S1):S66-S67. doi: 10.1016/j.freeradbiomed.2020.10.176.
  43. Darenskaya MA, Gavrilova OA, Rychkova LV, Kravtsova OV, Grebenkina LA, Osipova EV, et al. The assessment of oxidative stress intensity in adolescents with obesity by the integral index. International Journal of Biomedicine. 2018;8(1):37-41. doi: 10.21103/Article8 (1)_OA5.
  44. Darenskaya MA, Kolesnikova LI, Rychkova LV, Kravtsova OV, Semenova NV, Kolesnikov SI. Relationship between lipid metabolism state, lipid peroxidation and antioxidant defense system in girls with constitutional obesity. AIMS Molecular Science. 2021;8(2):117-126. doi: 10.3934/molsci.2021009.
  45. Darenskaya MA, Rychkova LV, Kolesnikov SI, Kravtsova OV, Semenova NV, Brichagina AS, Kolesnikova LI. Changes in lipid peroxidation system during standard therapy for exogenous constitutional obesity in adolescents of different sex. Vopr Det Dietol [Pediatric Nutrition]. 2022;20(1):5-11. doi: 10.20953/1727-5784-2022-1-5-11 [Article in Russian].
  46. Belkova N, Klimenko E, Nemchenko U, Romanitsa A, Novikova E, Pogodina A, Rychkova L. Metagenomic 16S rDNA amplicon datasets from adolescents with normal weight, obesity, and obesity with irritable bowel syndrome from Irkutsk, Siberia, Russia. Data in Brief. 2020. 32: 106141.
  47. Grigorova EV, Belkova NL, Nemchenko UM, Klimenko ES, Pogodina AV, Romanitsa AI, et al. Metasequencing of V3-V4 variable regions of 16S RRNA gene in opportunistic microbiota and gut biocenosis in obese adolescents. Bulletin of Experimental Biology and Medicine. 2021;170(3):321-325. doi: 10.1007/s10517-021-05060-3.
  48. Nemchenko UM, Belkova NL, Pogodina AV, Romanitsa AI, Novikova EA, Klimenko ES, et al. Features of the composition of bifidoflora in the intestinal microbiome of obese adolescents. Molecular Genetics, Microbiology and Virology. 2021;36(3):144-151. doi: 10.3103/S0891416821030046.
  49. Belkova NL, Nemchenko UM, Pogodina AV, Romanitsa AI, Novikova EA, Rychkova LV, Feranchuk SI. Composition and structure of gut microbiome in adolescents with obesity and different breastfeeding duration. Bulletin of Experimental Biology and Medicine. 2019;167(6):759-762. doi: 10.1007/s10517-019-04617-7.
  50. Rychkova L, Novikova E, Belkova N, Pogodina A, Romanitsa A, Bairova T.
    Positive correlation of serum alkaline phosphatase and serum alanine transaminase with the abundance-based indices of the microbiota in obese adolescents. Archives of Disease in Childhood. 2019;104(S3):А116. doi: 10.1136/archdischild-2019-epa.270.
  51. Rychkova L, Novikova E, Belkova N, Pogodina A, Romanitsa A, Feranchuk SI, Bairova Т. Features of gut microbiota composition at obese adolescents. Archives of Disease in Childhood. 2019;104(S3):А11. doi: 10.1136/archdischild-2019-epa.25.
  52. Novikova EA, Belkova NL, Pogodina AV, Romanitsa AI, Klimenko ES, Nemchenko UM, Rychkova LV. Gut microbiota shift in obese adolescents born by cesarean section. International Journal of Biomedicine. 2020;10(4):424-429. doi: 10.21103/Article10(4)_OA19.
  53. Klimenko ES, Belkova NL, Romanitsa AI, Pogodina AV, Rychkova LV, Darenskaya MA. Differences in gut microbiota composition and predicted metabolic functions: a pilot study of adolescents with normal weight and obesity. Bulletin of Experimental Biology and Medicine. 2022;173(5):597-601. doi: 10.47056/0365-9615-2022-173-5-597-601.
  54. Nemchenko UM, Grigorova EV, Pogodina AV, Belkova NL, Voropaeva NM, Romanitsa AI, et al. The relationship between the composition of the microbiota and functional intestinal disorders in obese adolescents. Klinichescheskaya Laboratornaya Diagnostika. 2022;67(2):106-109. doi: 10.51620/0869-2084-2022-67-2-106-109. [Article in Russian].
  55. Klimenko ES, Belkova NL, Romanitsa AI, Pogodina AV, Rychkova LV. Diversity and Metabolic Potential of the Gut Microbiome in Adolescents with Functional Bowel Disorder. Bulletin of Experimental Biology and Medicine. 2022;172(6):681-685. doi: 10.1007/s10517-022-05456-9.

Download Article
Received July 28, 2022.
Accepted August 23, 2022.
©2022 International Medical Research and Development Corporation.