Co-occurrence of Carbapenemase Genes blaNDM, blaVIM, blaKPC and blaOXA-48 in Pseudomonas aeruginosa Clinical Isolates

Salma Mohamed, Zainab Ahmed, Tajalseer Mubarak, Sara Mohamed, Rayan Mohamed, Hassan Higazi, Sara Ali

International Journal of Biomedicine. 2023;13(3):123-126.
DOI: 10.21103/Article13(3)_OA12
Originally published September 5, 2023


Pseudomonas aeruginosa, a gram-negative bacterium, is notorious for its innate resistance to many antibiotics. Carbapenems are broad-spectrum antibiotics often used to treat severe P. aeruginosa infections. However, the emergence and proliferation of carbapenem-resistant P. aeruginosa (CRPA) strains have become a grave global health concern. This study examined the co-occurrence of four major carbapenemase genes, namely blaNDM, blaVIM, blaKPC, and blaOXA-48, in clinical isolates of P. aeruginosa.
Using standard microbiological methods,150 P. aeruginosa clinical isolates were collected and identified, and antimicrobial susceptibility testing was conducted following Clinical and Laboratory Standards Institute guidelines. Polymerase chain reaction (PCR) with gene-specific primers was used to detect the presence of carbapenemase genes.
Among the 150 P. aeruginosa clinical isolates, 62(41.3%) were found to be carbapenem-resistant. The most detected carbapenemase genes were blaKPC (49%), blaNDM (31%), blaOXA-48 (22%), and blaVIM (9%). Notably 13(12.9%) isolates carried two carbapenemase genes. The combination of blaKPC and blaNDM genes was found in eight isolates, two isolates carried blaKPC and blaVIM, and three isolates carried blaOXA-48 and blaNDM. Four isolates (6.5%) harbored three carbapenemase genes. Co-occurrence of blaNDM, blaVIM, blaKPC, and blaOXA-48 was observed in four isolates (2.8%).
Our findings highlight the alarming prevalence of carbapenemase genes, particularly blaNDM and blaKPC, in clinical isolates of P. aeruginosa. The co-occurrence of multiple carbapenemase genes in the same isolate raises concerns about the potential for horizontal gene transfer and dissemination of multidrug-resistant P. aeruginosa strains in clinical settings. Further research is needed to elucidate the molecular mechanisms underlying the co-occurrence of carbapenemase genes and their impact on the clinical outcomes of P. aeruginosa infections. Urgent measures, such as enhanced surveillance, infection control protocols, and antibiotic stewardship programs, are imperative to combat the emergence and spread of CRPA strains.

Pseudomonas aeruginosa • carbapenemase • blaNDM • blaVIM • blaKPC • blaOXA-48 • clinical isolates
  1. Heidari R, Farajzadeh Sheikh A, Hashemzadeh M, Farshadzadeh Z, Salmanzadeh S, Saki M. Antibiotic resistance, biofilm production ability and genetic diversity of carbapenem-resistant Pseudomonas aeruginosa strains isolated from nosocomial infections in southwestern Iran. Mol Biol Rep. 2022 May;49(5):3811-3822. doi: 10.1007/s11033-022-07225-3.
  2. Büchler AC, Shahab SN, Severin JA, Vos MC, Voor In 't Holt AF. Outbreak investigations after identifying carbapenem-resistant Pseudomonas aeruginosa: a systematic review. Antimicrob Resist Infect Control. 2023 Apr 3;12(1):28. doi: 10.1186/s13756-023-01223-1.
  3. Spicer L, Campbell D, Johnson JK, Longo C, Balbuena T, Ewing T, et al. Characterization of carbapenem-resistant gram-negative bacteria collected in the Sentinel Surveillance Program, 2018–2019. 2022;2(S1):s52-s.
  4. Olaniran OB, Adeleke OE, Donia A, Shahid R, Bokhari H. Incidence and Molecular Characterization of Carbapenemase Genes in Association with Multidrug-Resistant Clinical Isolates of Pseudomonas aeruginosa from Tertiary Healthcare Facilities in Southwest Nigeria. Curr Microbiol. 2021 Dec 14;79(1):27. doi: 10.1007/s00284-021-02706-3.
  5. ElBaradei, A. Co-occurrence of blaNDM-1 and blaOXA-48 among carbapenem resistant Enterobacteriaceae isolates causing bloodstream infections in Alexandria, Egypt. Egyptian Journal of Medical Microbiology, 2022; 31(3): 1-7. doi: 10.21608/ejmm.2022.247169
  6. Demirci-Duarte S, Unalan-Altintop T, Gulay Z, Sari Kaygisiz AN, Cakar A, Gur D. In vitro susceptibility of OXA-48, NDM, VIM and IMP enzyme- producing Klebsiella spp. and Escherichia coli to fosfomycin. J Infect Dev Ctries. 2020 Apr 30;14(4):394-397. doi: 10.3855/jidc.12456.
  7. Pragasam AK, Veeraraghavan B, Shankar BA, Bakthavatchalam YD, Mathuram A, George B, Chacko B, Korula P, Anandan S. Will ceftazidime/avibactam plus aztreonam be effective for NDM and OXA-48-Like producing organisms: Lessons learnt from In vitro study. Indian J Med Microbiol. 2019 Jan-Mar;37(1):34-41. doi: 10.4103/ijmm.IJMM_19_189.
  8. Sahu C, Jain V, Mishra P, Prasad KN. Clinical and laboratory standards institute versus European committee for antimicrobial susceptibility testing guidelines for interpretation of carbapenem antimicrobial susceptibility results for Escherichia coli in urinary tract infection (UTI). J Lab Physicians. 2018 Jul-Sep;10(3):289-293. doi: 10.4103/JLP.JLP_176_17.
  9. Barbaro A, Cormaci P, La Marca A. DNA extraction from soil by EZ1 advanced XL (Qiagen). Forensic Sci Int. 2019 Jun;299:161-167. doi: 10.1016/j.forsciint.2019.04.004.
  10. Mohamed SER, Alobied A, Hussien WM, Saeed MI. blaOXA-48 Carbapenem Resistant Pseudomonas aeruginosa Clinical Isolates in Sudan. Journal of Advances in Microbiology. 2018;10(4):1-5.
  11. Mohamed S, Alobied A, Saeed MI, Hussien WMJS. New Delhi Metallo-β-lactamase (NDM)-mediated Carbapenem-resistant Pseudomonas aeruginosa clinical isolate in Sudan. Journal of Advances in Microbiology. 2018;1(3):1-5.
  12. Mohamed S, Ahmed Z, Mubarak T, Mohamed S, Higazi H, Ali S. Detection of the blaVIM-2 Gene in Carbapenem-Resistant  Acinetobacter baumannii Clinical Isolates in Sudan. International Journal of Biomedicine. 2022;12(4):636-639. doi:10.21103/Article12(4)_OA21
  13. Zhang R, Liu L, Zhou H, Chan EW, Li J, Fang Y, Li Y, Liao K, Chen S. Nationwide Surveillance of Clinical Carbapenem-resistant Enterobacteriaceae (CRE) Strains in China. EBioMedicine. 2017 May;19:98-106. doi: 10.1016/j.ebiom.2017.04.032.
  14. Logan LK, Weinstein RA. The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace. J Infect Dis. 2017 Feb 15;215(suppl_1):S28-S36. doi: 10.1093/infdis/jiw282.
  15. Wozniak A, Figueroa C, Moya-Flores F, Guggiana P, Castillo C, Rivas L, Munita JM, García PC. A multispecies outbreak of carbapenem-resistant bacteria harboring the blaKPC gene in a non-classical transposon element. BMC Microbiol. 2021 Apr 9;21(1):107. doi: 10.1186/s12866-021-02169-3.
  16. Huddleston JR. Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes. Infect Drug Resist. 2014 Jun 20;7:167-76. doi: 10.2147/IDR.S48820.

Download Article
Received April 24, 2023.
Accepted June 7, 2023.
©2023 International Medical Research and Development Corporation.