Expression of P53 and PTEN in Correlation with some Clinical and Pathological Features in Breast Cancer of Sudanese Patients

Abubaker M Hamad, Rania Mahjoub Ser Alkhatem, Asaad K Algahany, Hussain G Ahmed, Abdulaziz Alfahed, Hisham Ali Waggiallah

 
International Journal of Biomedicine. 2023;13(1):62-68.
DOI: 10.21103/Article13(1)_OA7
Originally published March 3, 2023

Abstract: 

The goal of our study was to determine the expression and phosphorylation of PTEN at residues Ser380/Thr382/383, as well as the nuclear expression of p53 in Sudanese patients with breast cancer (BC) in association with clinicopathological aspects of BC.
Methods and Results: This retrospective, descriptive study was carried out in Wad-Madani, Gezira state in Sudan, from January 2015 to August 2016. A total of 179 biopsies were taken at random from patients with breast lesions. Two blocks were obtained for each patient. One came from a malignant lesion (Group A), whereas the other came from the margin adjacent to healthy tissue (Group B). Immunohistochemistry and immunofluorescent histochemistry were performed on two separate slides. We found a statistically significant difference in the frequency of immunohistochemical expression of p53 and phosphorylation of PTEN between the cancerous breast tissue and adjacent normal tissue. P53 and PTEN exhibited a significant relationship with each other and the grade of tumor, indicating their importance in the aggressiveness of breast lesions. It should also be emphasized that there is an association between p53 expression and lymph node metastasis, which indicates the involvement of p53 mutation in the metastasis of BC.

Keywords: 
PTEN • p53 • breast cancer • immunohistochemistry
References: 
  1. Fahad Ullah M. Breast Cancer: Current Perspectives on the Disease Status. Adv Exp Med Biol. 2019;1152:51-64. doi: 10.1007/978-3-030-20301-6_4. PMID: 31456179.
  2. Fagundo-Rivera J, Gómez-Salgado J, García-Iglesias JJ, Gómez-Salgado C, Camacho-Martín S, Ruiz-Frutos C. Relationship between Night Shifts and Risk of Breast Cancer among Nurses: A Systematic Review. Medicina (Kaunas). 2020 Dec 10;56(12):680. doi: 10.3390/medicina56120680.
  3. Alghamdi A, Balkhi B, Alqahtani S, Almotairi H. The Economic Burden Associated with the Management of Different Stages of Breast Cancer: A Retrospective Cost of Illness Analysis in Saudi Arabia. Healthcare (Basel). 2021 Jul 18;9(7):907. doi: 10.3390/healthcare9070907. 
  4. Palmer JR, Polley EC, Hu C, John EM, Haiman C, Hart SN,et al. Contribution of Germline Predisposition Gene Mutations to Breast Cancer Risk in African American Women. J Natl Cancer Inst. 2020 Dec 14;112(12):1213-1221. doi: 10.1093/jnci/djaa040. Erratum in: J Natl Cancer Inst. 2020 Oct 1;112(10):1071. 
  5. van den Broek JJ, Schechter CB, van Ravesteyn NT, Janssens ACJW, Wolfson MC, Trentham-Dietz A, Simard J, Easton DF, Mandelblatt JS, Kraft P, de Koning HJ. Personalizing Breast Cancer Screening Based on Polygenic Risk and Family History. J Natl Cancer Inst. 2021 Apr 6;113(4):434-442. doi: 10.1093/jnci/djaa127. 
  6. Ji F, Yang CQ, Li XL, Zhang LL, Yang M, Li JQ, et al. Risk of breast cancer-related death in women with a prior cancer. Aging (Albany NY). 2020 Apr 6;12(7):5894-5906. doi: 10.18632/aging.102984.
  7. Olsson HL, Olsson ML. The Menstrual Cycle and Risk of Breast Cancer: A Review. Front Oncol. 2020 Jan 24;10:21. doi: 10.3389/fonc.2020.00021. 
  8. Padovano F, Mariani G, Ferdeghini M. Hybrid Imaging for Breast Malignancies. In: Volterrani D, Erba P, Carrió I, Strauss H., Mariani G. (Eds.) Nuclear Medicine Textbook. Springer, Cham; 2019:543-570.
  9. Schairer C, Hablas A, Eldein IAS, Gaafar R, Rais H, Mezlini A, et al. Risk factors for inflammatory and non-inflammatory breast cancer in North Africa. Breast Cancer Res Treat. 2020 Nov;184(2):543-558. doi: 10.1007/s10549-020-05864-3. 
  10. Marima R, Francies FZ, Hull R, Molefi T, Oyomno M, Khanyile R, et al. MicroRNA and Alternative mRNA Splicing Events in Cancer Drug Response/Resistance: Potent Therapeutic Targets. Biomedicines. 2021 Dec 2;9(12):1818. doi: 10.3390/biomedicines9121818. 
  11. Salih AM, Alam-Elhuda DM, Alfaki MM, Yousif AE, Nouradyem MM. Developing a risk prediction model for breast cancer: a Statistical Utility to Determine Affinity of Neoplasm (SUDAN-CA Breast). Eur J Med Res. 2017 Sep 29;22(1):35. doi: 10.1186/s40001-017-0277-6. 
  12. Kaur K, Manjari M, Rai V, Madhukar M. Evaluation of correlation of tumor markers with tumor grading in breast carcinoma patients. J Adv Med Dent Scie Res. 2016 Sep; 4(5):131-136.
  13. Lee SK, Bae SY, Lee JH, Lee HC, Yi H, Kil WH, et al. Distinguishing Low-Risk Luminal A Breast Cancer Subtypes with Ki-67 and p53 Is More Predictive of Long-Term Survival. PLoS One. 2015 Aug 4;10(8):e0124658. doi: 10.1371/journal.pone.0124658.
  14. Yemelyanova A, Vang R, Kshirsagar M, Lu D, Marks MA, Shih IeM, Kurman RJ. Immunohistochemical staining patterns of p53 can serve as a surrogate marker for TP53 mutations in ovarian carcinoma: an immunohistochemical and nucleotide sequencing analysis. Mod Pathol. 2011 Sep;24(9):1248-53. doi: 10.1038/modpathol.2011.85.
  15. Li C, Xu B, Miu X, Deng Z, Liao H, Hao L. Inhibition of miRNA-21 attenuates the proliferation and metastasis of human osteosarcoma by upregulating PTEN. Exp Ther Med. 2018 Jan;15(1):1036-1040. doi: 10.3892/etm.2017.5477. 
  16. Lin Fde M, Bacchi CE, Baracat EC, Carvalho FM. Loss of PTEN expression and AKT activation in HER2-positive breast carcinomas. Rev Bras Ginecol Obstet. 2014 Aug;36(8):340-6. 
  17. Alimonti A, Carracedo A, Clohessy JG, Trotman LC, Nardella C, Egia A, Salmena L, Sampieri K, Haveman WJ, Brogi E, Richardson AL, Zhang J, Pandolfi PP. Subtle variations in Pten dose determine cancer susceptibility. Nat Genet. 2010 May;42(5):454-8. doi: 10.1038/ng.556.
  18. Yang Z, Xie C, Xu W, Liu G, Cao X, Li W, et al. Phosphorylation and inactivation of PTEN at residues Ser380/Thr382/383 induced by Helicobacter pylori promotes gastric epithelial cell survival through PI3K/Akt pathway. Oncotarget. 2015 Oct 13;6(31):31916-26. doi: 10.18632/oncotarget.5577. 
  19. Ng'ida FD, Kotoroi GL, Mwangi R, Mabelele MM, Kitau J, Mahande MJ. Knowledge and practices on breast cancer detection and associated challenges among women aged 35 years and above in Tanzania: a case in Morogoro Rural District. Breast Cancer (Dove Med Press). 2019 May 28;11:191-197. doi: 10.2147/BCTT.S199889. 
  20. HICKEY BB. Malignant epithelial tumours in the Sudanese. Ann R Coll Surg Engl. 1959 May;24(5):303-22.
  21. Fadhil I, Alkhalawi E, Nasr R, Fouad H, Basu P, Camacho R, Alsaadoon H. National cancer control plans across the Eastern Mediterranean region: challenges and opportunities to scale-up. Lancet Oncol. 2021 Nov;22(11):e517-e529. doi: 10.1016/S1470-2045(21)00410-1. 
  22. Elamin A, Ibrahim ME, Abuidris D, Mohamed KE, Mohammed SI. Part I: cancer in Sudan—burden, distribution, and trends breast, gynecological, and prostate cancers. Cancer Med. 2015 Mar;4(3):447-56. doi: 10.1002/cam4.378. 
  23. Gang Z, Zhong L, Xiao-meng L, Jun-hua Z, Yong C, Xing Z. Expression of P53, PTEN and S100A4 in invasive ductal breast cancer and the clinical significance. J Chitwan Med College. 2016;6(2):49-55.
  24. Miao Y, Zheng W, Li N, Su Z, Zhao L, Zhou H, Jia L. MicroRNA-130b targets PTEN to mediate drug resistance and proliferation of breast cancer cells via the PI3K/Akt signaling pathway. Sci Rep. 2017 Feb 6;7:41942. doi: 10.1038/srep41942. 
  25. Alam MS, Jerah ABA, Ashraf AM, Kumaresan K, Eisa ZM, Mikhail NT. Promoter Methylation and Loss of Expression of PTEN Gene in Breast Cancer Patients from Saudi Population. J Clin Exp Oncol. 2017; 6(7):6 -11.
  26. Al-Subhi N, Ali R, Abdel-Fatah T, Moseley PM, Chan SYT, Green AR, et al. Targeting ataxia telangiectasia-mutated- and Rad3-related kinase (ATR) in PTEN-deficient breast cancers for personalized therapy. Breast Cancer Res Treat. 2018 Jun;169(2):277-286. doi: 10.1007/s10549-018-4683-4. 
  27. Khan F, Esnakula A, Ricks-Santi LJ, Zafar R, Kanaan Y, Naab T. Loss of PTEN in high grade advanced stage triple negative breast ductal cancers in African American women. Pathol Res Pract. 2018 May;214(5):673-678. doi: 10.1016/j.prp.2018.03.020. 
  28. Pan Y, Yuan Y, Liu G, Wei Y. P53 and Ki-67 as prognostic markers in triple-negative breast cancer patients. PLoS One. 2017 Feb 24;12(2):e0172324. doi: 10.1371/journal.pone.0172324.
  29. Payandeh M, Sadeghi M, Sadeghi E, Madani SH. Expression of p53 Breast Cancer in Kurdish Women in the West of Iran: a Reverse Correlation with Lymph Node Metastasis. Asian Pac J Cancer Prev. 2016;17(3):1261-4. 
  30. Fu D, Zuo Q, Huang Q, Su L, Ring HZ, Ring BZ. Molecular Classification of Lobular Carcinoma of the Breast. Sci Rep. 2017 Mar 17;7:43265. doi: 10.1038/srep43265. 
  31. Efird JT, Hunter S, Chan S, Jeong S, Thomas SL, Jindal C, Biswas T. The Association between Age, Comorbidities and Use of Radiotherapy in Women with Breast Cancer: Implications for Survival. Medicines (Basel). 2018 Jun 25;5(3):62. doi: 10.3390/medicines5030062.
  32. Yun SJ, Sohn YM, Seo M. Risk Stratification For Axillary Lymph Node Metastases in Breast Cancer Patients: What Clinicopathological and Radiological Factors of Primary Breast Cancer Can Predict Preoperatively Axillary Lymph Node Metastases? Ultrasound Q. 2017 Mar;33(1):15-22. doi: 10.1097/RUQ.0000000000000249.

Download Article
Received November 7, 2022.
Accepted December 12, 2022.
©2023 International Medical Research and Development Corporation.