Mesenchymal Subtype of Triple-Negative Breast Cancer: A Review of Specific Features

Nadezhda V. Krakhmal, Natalia N. Babyshkina, Sergey V. Vtorushin

International Journal of Biomedicine. 2023;13(1):14-19.
DOI: 10.21103/Article13(1)_RA2
Originally published March 3, 2023


Triple-negative breast cancer (TNBC) is characterized by high invasiveness, high metastatic potential, proneness to relapse, and poor prognosis. Currently, four subtypes in the classification of triple-negative breast cancer (TNBC) are distinguished, which differ from each other in morphological manifestations, molecular genetic features, survival rates, prognosis parameters, and tumor resistance to therapy. A special place in this breast tumors group is occupied by the mesenchymal subtype, the frequency percentage of which varies from 7% to 28%, according to different data. The mesenchymal subtype of TNBC (M-TNBC) is characterized by the expression of molecular markers related to the epithelial-mesenchymal transition (EMT) program and cancer stem cells. M-TNBC has a highly aggressive behavior and worse prognosis due to its invasive and stem-like features, which correlate with metastatic dissemination and resistance to therapies. This review discusses the current knowledge regarding the mesenchymal TNBC subtype and its response to conventional therapeutic strategies. The complex approach to finding effective treatment options to restore immunocompetence in mesenchymal breast cancer patients is the final goal for further extended studies.

triple-negative breast cancer • epithelial-mesenchymal transition • molecular markers
  1. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121(7):2750-67. doi: 10.1172/JCI45014.
  2. Lehmann BD, Jovanović B, Chen X, Estrada MV, Johnson KN, Shyr Y, et al. Refinement of Triple-Negative Breast Cancer Molecular Subtypes: Implications for Neoadjuvant Chemotherapy Selection. PLoS One. 2016;11(6):e0157368. doi: 10.1371/journal.pone.0157368.
  3. Burstein MD, Tsimelzon A, Poage GM, Covington KR, Contreras A, Fuqua SA, et al. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res. 2015;21(7):1688-98. doi: 10.1158/1078-0432.CCR-14-0432.
  4. Harano K, Wang Y, Lim B, Seitz RS, Morris SW, Bailey DB, et al. Rates of immune cell infiltration in patients with triple-negative breast cancer by molecular subtype. PLoS One. 2018;13(10):e0204513. doi: 10.1371/journal.pone.0204513.
  5. Kim S, Moon BI, Lim W, Park S, Cho MS, Sung SH. Feasibility of Classification of Triple Negative Breast Cancer by Immunohistochemical Surrogate Markers. Clin Breast Cancer. 2018;18(5):e1123-e1132. doi: 10.1016/j.clbc.2018.03.012.
  6. Hartung C, Porsch M, Stückrath K, Kaufhold S, Staege MS, Hanf V, et al. Identifying High-Risk Triple-Negative Breast Cancer Patients by Molecular Subtyping. Breast Care (Basel). 2021;16(6):637-647. doi: 10.1159/000519255.
  7. Zhao S, Ma D, Xiao Y, Li XM, Ma JL, Zhang H, et al. Molecular Subtyping of Triple-Negative Breast Cancers by Immunohistochemistry: Molecular Basis and Clinical Relevance. Oncologist. 2020;25(10):e1481-e1491.  doi: 10.1634/theoncologist.2019-0982.
  8. Bailey JM, Alsina J, Rasheed ZA, McAllister FM, Fu YY, Plentz R, et al. DCLK1 marks a morphologically distinct subpopulation of cells with stem cell properties in preinvasive pancreatic cancer. Gastroenterology. 2014;146(1):245-56. doi: 10.1053/j.gastro.2013.09.050.
  9. Liu H, Wen T, Zhou Y, Fan X, Du T, Gao T, et al. DCLK1 Plays a Metastatic-Promoting Role in Human Breast Cancer Cells. Biomed Res Int. 2019;2019:1061979. doi: 10.1155/2019/1061979.
  10. Chandrakesan P, Yao J, Qu D, May R, Weygant N, Ge Y, et al. Dclk1, a tumor stem cell marker, regulates pro-survival signaling and self-renewal of intestinal tumor cells. Mol Cancer. 2017 Feb 1;16(1):30. doi: 10.1186/s12943-017-0594-y.
  11. Kumar S, Bal A, Das A, Bhattacharyya S, Laroiya I, Khare S, Singh G. Molecular Subtyping of Triple Negative Breast Cancer by Surrogate Immunohistochemistry Markers. Appl Immunohistochem Mol Morphol. 2021;29(4):251-257. doi: 10.1097/PAI.0000000000000897.
  12. Hasdemir OA, Tokgöz S, Köybaşıoğlu F, Karabacak H, Yücesoy C, İmamoğlu Gİ. Clinicopathological features of metaplastic breast carcinoma. Adv Clin Exp Med. 2018;27(4):509-513. doi: 10.17219/acem/68293.
  13. Reddy TP, Rosato RR, Li X, Moulder S, Piwnica-Worms H, Chang JC. A comprehensive overview of metaplastic breast cancer: clinical features and molecular aberrations. Breast Cancer Res. 2020;22(1):121. doi: 10.1186/s13058-020-01353-z.
  14. Herrera Juarez M, Tolosa Ortega P, Sanchez de Torre A, Ciruelos Gil E. Biology of the Triple-Negative Breast Cancer: Immunohistochemical, RNA, and DNA Features. Breast Care (Basel). 2020;15(3):208-216. doi: 10.1159/000508758.
  15. González-Martínez S, Pérez-Mies B, Carretero-Barrio I, Palacios-Berraquero ML, Perez-García J, Cortés J, et al. Molecular Features of Metaplastic Breast Carcinoma: An Infrequent Subtype of Triple Negative Breast Carcinoma. Cancers (Basel). 2020;12(7):1832. doi: 10.3390/cancers12071832.
  16. Yam C, Mani SA, Moulder SL. Targeting the Molecular Subtypes of Triple Negative Breast Cancer: Understanding the Diversity to Progress the Field. Oncologist. 2017;22(9):1086-1093. doi: 10.1634/theoncologist.2017-0095.
  17. Kumar S, Bal A, Das A, Loriya I, Khare S, Bhattacharya S, et al. Spectrum of PIK3CA/AKT mutations across molecular subtypes of triple-negative breast cancer. Breast Cancer Res Treat. 2021;187(3):625-633. doi: 10.1007/s10549-021-06242-3.
  18. Hill BS, Sarnella A, Capasso D, Comegna D, Del Gatto A, Gramanzini M, et al. Therapeutic Potential of a Novel αvβ₃ Antagonist to Hamper the Aggressiveness of Mesenchymal Triple Negative Breast Cancer Sub-Type. Cancers (Basel). 2019;11(2):139. doi: 10.3390/cancers11020139.
  19. Balko JM, Schwarz LJ, Luo N, Estrada MV, Giltnane JM, Dávila-González D, et al. Triple-negative breast cancers with amplification of JAK2 at the 9p24 locus demonstrate JAK2-specific dependence. Sci Transl Med. 2016 Apr 13;8(334):334ra53. doi: 10.1126/scitranslmed.aad3001. Erratum in: Sci Transl Med. 2019 Jan 23;11(476): PMID: 27075627; PMCID: PMC5256931.
  20. Brooks AJ, Putoczki T. JAK-STAT Signalling Pathway in Cancer. Cancers (Basel). 2020;12(7):1971. doi: 10.3390/cancers12071971.
  21. O'Shea JJ, Schwartz DM, Villarino AV, Gadina M, McInnes IB, Laurence A. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med. 2015;66:311-28. doi: 10.1146/annurev-med-051113-024537.
  22. Marotta LL, Almendro V, Marusyk A, Shipitsin M, Schemme J, Walker SR, et al. The JAK2/STAT3 signaling pathway is required for growth of CD44⁺CD24⁻ stem cell-like breast cancer cells in human tumors. J Clin Invest. 2011 Jul;121(7):2723-35. doi: 10.1172/JCI44745.
  23. Yin L, Duan JJ, Bian XW, Yu SC. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020;22(1):61. doi: 10.1186/s13058-020-01296-5.
  24. Papadopoulos N, Lennartsson J. The PDGF/PDGFR pathway as a drug target. Mol Aspects Med. 2018;62:75-88. doi: 10.1016/j.mam.2017.11.007.
  25. Zheng Q, Gao J, Yin P, Wang W, Wang B, Li Y, et al. CD155 contributes to the mesenchymal phenotype of triple-negative breast cancer. Cancer Sci. 2020;111(2):383-394. doi: 10.1111/cas.14276.
  26. Zajac O, Leclere R, Nicolas A, Meseure D, Marchiò C, Vincent-Salomon A, et al. AXL Controls Directed Migration of Mesenchymal Triple-Negative Breast Cancer Cells. Cells. 2020;9(1):247. doi: 10.3390/cells9010247.
  27. Liu TJ, Sun BC, Zhao XL, Zhao XM, Sun T, Gu Q, et al. CD133+ cells with cancer stem cell characteristics associates with vasculogenic mimicry in triple-negative breast cancer. Oncogene. 2013;32(5):544-53. doi: 10.1038/onc.2012.85.
  28. Wagenblast E, Soto M, Gutiérrez-Ángel S, Hartl CA, Gable AL, Maceli AR, et al. A model of breast cancer heterogeneity reveals vascular mimicry as a driver of metastasis. Nature. 2015;520(7547):358-62. doi: 10.1038/nature14403. 
  29. Camorani S, Crescenzi E, Gramanzini M, Fedele M, Zannetti A, Cerchia L. Aptamer-mediated impairment of EGFR-integrin αvβ3 complex inhibits vasculogenic mimicry and growth of triple-negative breast cancers. Sci Rep. 2017;7:46659. doi: 10.1038/srep46659.
  30. Bianchini G, Balko JM, Mayer IA, Sanders ME, Gianni L. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol. 2016;13(11):674-690. doi: 10.1038/nrclinonc.2016.66.
  31. Garrido-Castro AC, Lin NU, Polyak K. Insights into Molecular Classifications of Triple-Negative Breast Cancer: Improving Patient Selection for Treatment. Cancer Discov. 2019;9(2):176-198. doi: 10.1158/2159-8290.CD-18-1177.
  32. Marra A, Trapani D, Viale G, Criscitiello C, Curigliano G. Practical classification of triple-negative breast cancer: intratumoral heterogeneity, mechanisms of drug resistance, and novel therapies. NPJ Breast Cancer. 2020;6:54. doi: 10.1038/s41523-020-00197-2.
  33. Dass SA, Tan KL, Selva Rajan R, Mokhtar NF, Mohd Adzmi ER, Wan Abdul Rahman WF, et al. Triple Negative Breast Cancer: A Review of Present and Future Diagnostic Modalities. Medicina (Kaunas). 2021;57(1):62. doi: 10.3390/medicina57010062.
  34. Nedeljković M, Damjanović A. Mechanisms of Chemotherapy Resistance in Triple-Negative Breast Cancer-How We Can Rise to the Challenge. Cells. 2019 Aug 22;8(9):957. doi: 10.3390/cells8090957. PMID: 31443516; PMCID: PMC6770896.
  35. O'Conor CJ, Chen T, González I, Cao D, Peng Y. Cancer stem cells in triple-negative breast cancer: a potential target and prognostic marker. Biomark Med. 2018;12(7):813-820. doi: 10.2217/bmm-2017-0398.
  36. Masuda H, Baggerly KA, Wang Y, Zhang Y, Gonzalez-Angulo AM, Meric-Bernstam F, et al. Differential response to neoadjuvant chemotherapy among 7 triple-negative breast cancer molecular subtypes. Clin Cancer Res. 2013;19(19):5533-40. doi: 10.1158/1078-0432.CCR-13-0799.
  37. Poggi A, Giuliani M. Mesenchymal Stromal Cells Can Regulate the Immune Response in the Tumor Microenvironment. Vaccines (Basel). 2016;4(4):41. doi: 10.3390/vaccines4040041.
  38. Dongre A, Rashidian M, Reinhardt F, Bagnato A, Keckesova Z, Ploegh HL, et al. Epithelial-to-Mesenchymal Transition Contributes to Immunosuppression in Breast Carcinomas. Cancer Res. 2017;77(15):3982-3989. doi: 10.1158/0008-5472.CAN-16-3292.
  39. Ahn SG, Kim SJ, Kim C, Jeong J. Molecular Classification of Triple-Negative Breast Cancer. J Breast Cancer. 2016;19(3):223-230. doi: 10.4048/jbc.2016.19.3.223.
  40. Gu G, Dustin D, Fuqua SA. Targeted therapy for breast cancer and molecular mechanisms of resistance to treatment. Curr Opin Pharmacol. 2016;31:97-103. doi: 10.1016/j.coph.2016.11.005.
  41. Kim S, Park S, Cho MS, Lim W, Moon BI, Sung SH. Strong Correlation of Indoleamine 2,3-Dioxygenase 1 Expression with Basal-Like Phenotype and Increased Lymphocytic Infiltration in Triple-Negative Breast Cancer. J Cancer. 2017;8(1):124-130. doi: 10.7150/jca.17437.
  42. Yang F, Wang Y, Li Q, Cao L, Sun Z, Jin J, et al. Intratumor heterogeneity predicts metastasis of triple-negative breast cancer. Carcinogenesis. 2017;38(9):900-909. doi: 10.1093/carcin/bgx071.
  43. Karaayvaz M, Cristea S, Gillespie SM, Patel AP, Mylvaganam R, Luo CC, et al. Unravelling subclonal heterogeneity and aggressive disease states in TNBC through single-cell RNA-seq. Nat Commun. 2018;9(1):3588. doi: 10.1038/s41467-018-06052-0.
  44. Wang DY, Jiang Z, Ben-David Y, Woodgett JR, Zacksenhaus E. Molecular stratification within triple-negative breast cancer subtypes. Sci Rep. 2019;9(1):19107. doi: 10.1038/s41598-019-55710-w.
  45. Lee YM, Oh MH, Go JH, Han K, Choi SY. Molecular subtypes of triple-negative breast cancer: understanding of subtype categories and clinical implication. Genes Genomics. 2020;42(12):1381-1387. doi: 10.1007/s13258-020-01014-7. 
  46. Nunnery SE, Mayer IA, Balko JM. Triple-Negative Breast Cancer: Breast Tumors With an Identity Crisis. Cancer J. 2021;27(1):2-7. doi: 10.1097/PPO.0000000000000494.
  47. Mezi S, Botticelli A, Pomati G, Cerbelli B, Scagnoli S, Amirhassankhani S, et al. Standard of Care and Promising New Agents for the Treatment of Mesenchymal Triple-Negative Breast Cancer. Cancers (Basel). 2021;13(5):1080. doi: 10.3390/cancers13051080.

Download Article
Received December 21, 2022.
Accepted February 2, 2023.
©2023 International Medical Research and Development Corporation.