Comprehensive Assessment of Cardiometabolic Risk in Patients with Chronic Obstructive Pulmonary Disease and Obesity

Evgeniy S. Ovsyannikov, Andrey V. Budnevsky, Lilia A. Titova, Anastasia S. Ivanova, Sofia A. Korchagina

International Journal of Biomedicine. 2023;13(1):31-36.
DOI: 10.21103/Article13(1)_OA1
Originally published March 3, 2023


Background: Currently, comorbid patients with chronic obstructive pulmonary disease (COPD) and obesity are becoming increasingly common in clinical practice. The objective of this study was to conduct a comparative analysis of indicators of various types of body metabolism (carbohydrate, lipid, adipokine profile) in COPD patients with obesity and normal body weight.
Methods and Results: The study included 86 patients with COPD (GOLD 3-4, group D). The diagnosis of COPD was established in accordance with GOLD, revision 2021.The patients were divided into two groups. Group 1 consisted of 43 COPD patients with NBW [31(72.7%) men and 12(27.3%) women aged 43 to 75 years (mean age of 62.40 ± 8.83 years)] and Group 2 consisted of 43 COPD patients with obesity [32(77.27%) men and 11(22.73%) women aged 48 to 72 years (mean age of 62.94 ± 5.96 years)]. All patients underwent an analysis of the composition of the body by the bioelectrical impedance method. Blood levels of total cholesterol (TC), triglycerides (TG), HDL-C, and LDL-C were determined by the enzymatic colorimetric method. The glucose level was determined by the glucose oxidant method. The serum adipokine levels (leptin, adiponectin, resistin), as well as testosterone and immunoreactive insulin, were determined using ELISA. To assess insulin resistance, the HOMA-IR index was calculated. To determine cardiovascular risk, the visceral adiposity index (VAI) was calculated according to the formula, which considers body mass index, triglycerides, HDL-C, and waist circumference.
The level of HDL-C was significantly lower (P=0.0000)), and the levels of TC (P=0.0479), LDL-C (P=0.0020), glucose (P=0.0020), immunoreactive insulin (P=0.0000), and HOMA-IR index (P=0.0000), were significantly higher in Group 2 than in Group 1. As for the content of adipose tissue hormones, the leptin level was significantly higher in Group 2 (P=0.0000) than in Group 1, while there were no statistically significant differences between groups in the level of resistin (P=0.4996). The adiponectin level was significantly lower in Group 2 than in Group 1 (P<0.0001).  The VAI level in Group 2 was significantly higher than in Group 1 (2.13±1.56 and 1.18±0.41, respectively, P=0.0002). In contrast, the testosterone level was significantly lower in Group 2 than in Group 1 (10.59±6.94 nmol/l and 20.02±12.25 nmol/l, respectively, P=0.0000).
Conclusion: The high metabolic activity of adipose tissue in patients with COPD and obesity is directly related to the progression of comorbid conditions.

COPD • cardiometabolic risk • body mass index •leptin
  1. Christenson SA, Smith BM, Bafadhel M, Putcha N. Chronic obstructive pulmonary disease. Lancet. 2022 Jun 11;399(10342):2227-2242. doi: 10.1016/S0140-6736(22)00470-6.
  2. WHO: Chronic obstructive pulmonary disease (COPD) [May; 2022]. Avail­able from:
  3.  Chuchalin AG, Avdeev SN, Aisanov ZR, Belevskii AS, Leshchenko IV, Meshcheryakova NN, Ovcharenko SI, Shmelev EI. Russian Respiratory Society. Federal Guidelines on Diagnosis and Treatment of Chronic Obstructive Pulmonary Disease. Pul'monologiya. 2014;(3):15-36. doi:10.18093/0869-0189-2014-0-3-15-54. [In Russian].
  4. Budnevsky AV, Ovsyannikov ES, Labzhania NB. [Chronic obstructive pulmonary disease concurrent with metabolic syndrome: Pathophysiological and clinical features]. Ter Arkh. 2017;89(1):123-127. Russian. doi: 10.17116/terarkh2017891123-127. 
  5. Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease: 2022 Report. Avail­able from:
  6. Pazarlı AC. The role of anthropometric measurements in identifying cardiometabolic diseases in obstructive sleep apnea syndrome. Tuberk Toraks. 2022 Sep;70(3):287-292. English. doi: 10.5578/tt.20229708. 
  7. Beijers RJHCG, van de Bool C, van den Borst B, Franssen FME, Wouters EFM, Schols AMWJ. Normal Weight but Low Muscle Mass and Abdominally Obese: Implications for the Cardiometabolic Risk Profile in Chronic Obstructive Pulmonary Disease. J Am Med Dir Assoc. 2017 Jun 1;18(6):533-538. doi: 10.1016/j.jamda.2016.12.081.
  8. Palma G, Sorice GP, Genchi VA, Giordano F, Caccioppoli C, D'Oria R, Marrano N, Biondi G, Giorgino F, Perrini S. Adipose Tissue Inflammation and Pulmonary Dysfunction in Obesity. Int J Mol Sci. 2022 Jul 1;23(13):7349. doi: 10.3390/ijms23137349. 
  9. Lavie CJ, De Schutter A, Parto P, Jahangir E, Kokkinos P, Ortega FB, Arena R, Milani RV. Obesity and Prevalence of Cardiovascular Diseases and Prognosis-The Obesity Paradox Updated. Prog Cardiovasc Dis. 2016 Mar-Apr;58(5):537-47. doi: 10.1016/j.pcad.2016.01.008. 
  10. Gruberg L, Weissman NJ, Waksman R, et al. The impact of obesity on the short-term and long-term outcomes after percutaneous coronary intervention: the obesity paradox? J Am Coll Cardiol 2002;39:578–584
  11. Giri Ravindran S, Saha D, Iqbal I, Jhaveri S, Avanthika C, Naagendran MS, Bethineedi LD, Santhosh T. The Obesity Paradox in Chronic Heart Disease and Chronic Obstructive Pulmonary Disease. Cureus. 2022 Jun 5;14(6):e25674. doi: 10.7759/cureus.25674.
  12. Samuleeva YuV, Zadionchenko VS, Li VV, Adasheva TV, Samorukova EI, Pikhlak AE, Logachev VA, Sokolova LB. Obesity and metabolic disorders in COPD patients: opportunities for phenotyping. PULMONOLOGIYA. 2014;(5):32-38. doi: 10.18093/0869-0189-2014-0-5-32-38. [ Article in Russian].
  13. Ovsyannikov ES, Budnevsky AV, Titova LA, Ivanova AS, Kachur AS. The Peculiarities of Six-Minute Walk Test in Patients with Chronic Obstructive Pulmonary Disease, Some with Normal Weight and Some Overweight. International Journal of Biomedicine. 2022;12(4):530-534. doi:10.21103/Article12(4)_OA1.
  14. Aisanov ZR, Avdeev SN, Arkhipov VV, Belevskii AS, Leshchenko IV, Ovcharenko SI, Shmelev EI, Chuchalin AG. National Clinical Guidelines on Diagnosis and Treatment of Chronic Obstructive Pulmonary Disease: A Clinical Decision-Making Algorithm. Pul'monologiya. 2017;27(1):13-20. doi: 10.18093/0869-0189-2017-27-1-13-20 [In Russian].
  15. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985 Jul;28(7):412-9. doi: 10.1007/BF00280883. 
  16.  Pérez ÁN, Álvarez G, Sanchez Tomero JA, Barril G. Body mass index (BMI), visceral adiposity index (VAI), and concicity index (CI) as predictors of cardiovascular risk. Clinical Nutrition. 2018;37(Supp 1):S104. doi:10.1016/j.clnu.2018.06.1398
  17. Martínez-Luna N, Orea-Tejeda A, González-Islas D, Flores-Cisneros L, Keirns-Davis C, Sánchez-Santillán R, Pérez-García I, Gastelum-Ayala Y, Martínez-Vázquez V, Martínez-Reyna Ó. Association between body composition, sarcopenia and pulmonary function in chronic obstructive pulmonary disease. BMC Pulm Med. 2022 Mar 26;22(1):106. doi: 10.1186/s12890-022-01907-1. 
  18. Sun Y, Milne S, Jaw JE, Yang CX, Xu F, Li X, Obeidat M, Sin DD. BMI is associated with FEV1 decline in chronic obstructive pulmonary disease: a meta-analysis of clinical trials. Respir Res. 2019 Oct 29;20(1):236. doi: 10.1186/s12931-019-1209-5. 
  19.  Budnevsky AV, Malysh EY. [Clinico-Pathogenetic Relationship of Cardiovascular Diseases and Chronic Obstructive Pulmonary Disease]. Kardiologiia. 2017 Apr;57(4):89-93. Russian. PMID: 28762911.
  20. Yang HY, Hu LY, Chen HJ, Chen RY, Hu CK, Shen CC. Increased Risk of Chronic Obstructive Pulmonary Disease in Patients with Hyperlipidemia: A Nationwide Population-Based Cohort Study. Int J Environ Res Public Health. 2022 Sep 28;19(19):12331. doi: 10.3390/ijerph191912331. 
  21.  Khanna D, Rehman A. Pathophysiology of Obesity. 2022 Jun 11. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan.
  22.  Vassiliou AG, Vitsas V, Kardara M, Keskinidou C, Michalopoulou P, Rovina N, Dimopoulou I, Orfanos SE, Tsoukalas G, Koutsoukou A, Kotanidou A. Study of inflammatory biomarkers in COPD and asthma exacerbations. Adv Respir Med. 2020;88(6):558-566. doi: 10.5603/ARM.a2020.0188. 
  23. Provotorov VM, Budnevskiĭ AV, Semenkova GG, Shishkina ES. Proinflammatory Cytokines in Combination of Coronary Heart Disease and Chronic Obstructive Pulmonary Disease. Klin Med (Mosk). 2015;93(2):5-9. [Article in Russian].
  24. Lavie CJ, Milani RV. Obesity and cardiovascular disease: the hippocrates paradox? J Am Coll Cardiol. 2003 Aug 20;42(4):677-9. doi: 10.1016/s0735-1097(03)00784-8. 
  25. Summer R, Little FF, Ouchi N, Takemura Y, Aprahamian T, Dwyer D, Fitzsimmons K, Suki B, Parameswaran H, Fine A, Walsh K. Alveolar macrophage activation and an emphysema-like phenotype in adiponectin-deficient mice. Am J Physiol Lung Cell Mol Physiol. 2008 Jun;294(6):L1035-42. doi: 10.1152/ajplung.00397.2007. 
  26. Kozhevnikova SA, Budnevskiy AV, Ovsyannikov ES, Belov VN. Particularity of the clinical course and quality of life of patients with chronic obstructive pulmonary disease on the background of the metabolic syndrome. Medical News of North Caucasus. 2017;12(1):20–23. doi:10.14300/mnnc.2017.12006. [Article in Russian].
  27. Piazzolla G, Castrovilli A, Liotino V, Vulpi MR, Fanelli M, Mazzocca A, Candigliota M, Berardi E, Resta O, Sabbà C, Tortorella C. Metabolic syndrome and Chronic Obstructive Pulmonary Disease (COPD): The interplay among smoking, insulin resistance and vitamin D. PLoS One. 2017 Oct 24;12(10):e0186708. doi: 10.1371/journal.pone.0186708. 
  28. Díez-Manglano J, Barquero-Romero J, Almagro P, Cabrera FJ, López García F, Montero L, Soriano JB; Working Group on COPD; Spanish Society of Internal Medicine. COPD patients with and without metabolic syndrome: clinical and functional differences. Intern Emerg Med. 2014 Jun;9(4):419-25. doi: 10.1007/s11739-013-0945-7. 
  29. Park SS, Perez Perez JL, Perez Gandara B, Agudelo CW, Rodriguez Ortega R, Ahmed H, Garcia-Arcos I, McCarthy C, Geraghty P. Mechanisms Linking COPD to Type 1 and 2 Diabetes Mellitus: Is There a Relationship between Diabetes and COPD? Medicina (Kaunas). 2022 Aug 1;58(8):1030. doi: 10.3390/medicina58081030. 
  30. Cazzola M, Rogliani P, Calzetta L, Lauro D, Page C, Matera MG. Targeting Mechanisms Linking COPD to Type 2 Diabetes Mellitus. Trends Pharmacol Sci. 2017 Oct;38(10):940-951. doi: 10.1016/ 
  31.  Balasubramanian V, Naing S. Hypogonadism in chronic obstructive pulmonary disease: incidence and effects. Curr Opin Pulm Med. 2012 Mar;18(2):112-7. doi: 10.1097/MCP.0b013e32834feb37. 
  32.  Baillargeon J, Urban RJ, Zhang W, Zaiden MF, Javed Z, Sheffield-Moore M, Kuo YF, Sharma G. Testosterone replacement therapy and hospitalization rates in men with COPD. Chron Respir Dis. 2019 Jan-Dec;16:1479972318793004. doi: 10.1177/1479972318793004. 
  33. Budnevsky AV, Isaeva YV, Malysh EY, Kozhevnikova SA. [Pulmonary rehabilitation as an effective method for optimizing therapeutic and preventive measures in patients with chronic obstructive pulmonary disease concurrent with metabolic syndrome]. Ter Arkh. 2016;88(8):25-29. doi: 10.17116/terarkh201688825-29. [Article in Russian].
  34. Budnevskiy AV, Tsvetikova LN, Ovsyannikov ES, Goncharenko OV. A role of melatonin for occurrence of chronic obstructive pulmonary disease.  Pulmonologiya, 2016, 26(3), 372–378. doi:10.18093/086990189920166266333722378 [Article in Russian].

Download Article
Received December 10, 2022.
Accepted January 7, 2023.
©2023 International Medical Research and Development Corporation.