Acute Vascular Events: Cellular and Molecular Mechanisms

Varun HK Rao, Rasika T Shankar, Gundu H. R. Rao

International Journal of Biomedicine. 2023;13(3):9-16.
DOI: 10.21103/Article13(3)_RA1
Originally published September 5, 2023


Cardiovascular diseases (CVDs) are the leading cause of death worldwide. An estimated 17.9 million individuals died from CVDs in 2019, representing 32% of all global deaths. Of these deaths, 85% were due to heart attack and stroke. Cardiometabolic risks, such as hypertension, excess weight, obesity, type 2 diabetes, and vascular diseases, contribute significantly to the progression of coronary artery disease. Known sequelae of events that lead to these cardiometabolic diseases include oxidative stress, inflammation, development of dysfunction of vascular adipose tissue, altered blood pressure and blood lipids, altered glucose metabolism, hardening of the arteries, endothelial dysfunction, development of atherosclerotic plaques, and activation of platelet and coagulation pathways. The Framingham Heart Study Group has developed a Risk Score that estimates the risk of developing heart disease in a 10-year period. This group of experts has developed mathematical functions for predicting clinical coronary disease events. These prediction capabilities are derived by assigning weights to major CVD risk factors such as sex, age, blood pressure, total cholesterol, low-density lipoprotein, high-density lipoprotein cholesterol, smoking behavior, and diabetes status.
Currently, there is a growing interest in the use of artificial intelligence and machine learning applications. AI-based mimetic pattern-based algorithms seem to be better than the conventional Framingham Risk Score, in predicting clinical events related to CVDs. However, there are limitations to these applications as they do not have access to data on the specific factors that trigger acute vascular events, such as heart attack and stroke.
This overview briefly discusses some salient cellular and molecular mechanisms involved in precipitating thrombotic conditions. Further improvements in emerging technologies will provide greater opportunities for patient selection and treatment options. Several clinical studies have demonstrated that most CVDs can be prevented by addressing behavioral risk factors such as tobacco use, unhealthy diet and obesity, physical activity, and harmful use of alcohol. Early detection and better management of the modifiable risks seem to be the only way to reduce, reverse, or prevent these diseases.

cardiovascular disease • artificial intelligence • thrombosis, risk factors
  1. Rao GHR. Global Syndemic of Metabolic Diseases: Editorial Comments. J Diab. Clin Res.2019;1(1):2-4.
  2. Chong B, Kong G, Shankar K, Chew HSJ, Lin C, Goh R, et al. The global syndemic of metabolic diseases in the young adult population: A consortium of trends and projections from the Global Burden of Disease 2000-2019. Metabolism. 2023 Apr;141:155402. doi: 10.1016/j.metabol.2023.155402. 
  3. Chew NWS, Ng CH, Tan DJH, Kong G, Lin C, Chin YH, et al. The global burden of metabolic disease: Data from 2000 to 2019. Cell Metab. 2023 Mar 7;35(3):414-428.e3. doi: 10.1016/j.cmet.2023.02.003. 
  4. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al.; American Heart Association; National Heart, Lung, and Blood Institute. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005 Oct 25;112(17):2735-52. doi: 10.1161/CIRCULATIONAHA.105.169404. Erratum in: Circulation. 2005 Oct 25;112(17):e297. Erratum in: Circulation. 2005 Oct 25;112(17):e298.
  5. Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al.; GBD-NHLBI-JACC Global Burden of Cardiovascular Diseases Writing Group. Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study. J Am Coll Cardiol. 2020 Dec 22;76(25):2982-3021. doi: 10.1016/j.jacc.2020.11.010. Erratum in: J Am Coll Cardiol. 2021 Apr 20;77(15):1958-1959.
  6. Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019 Sep 10;140(11):e596-e646. doi: 10.1161/CIR.0000000000000678. Erratum in: Circulation. 2019 Sep 10;140(11):e649-e650. Erratum in: Circulation. 2020 Jan 28;141(4):e60. Erratum in: Circulation. 2020 Apr 21;141(16):e774.
  7. Rao GHR. Number one Killer: Vascular Disease. Ann Clin Diab. Endocrionol.2018; 1(1):1008.
  8. Rao GHR. Coronavirus Disease and Acute Vascular Events. Clin Appl Thromb Hemost. 2020 Jan-Dec;26:1076029620929091. doi: 10.1177/1076029620929091. 
  9. Rao GHR. Coronavirus (COVID-19), Comorbidities, and Acute Vascular Events; Guest Editorial. ECCMC EC Clinical Case Reports. 3.6 (2020):87-91.
  10. Rao GHR. Coronavirus Disease (Covid-19), Comorbidities, and Clinical Manifestations. Guest Editorial. EC Diab, Met Res. 4.6 (2020): 27-33.
  11. Rao GHR. Coronavirus Disease (Covid-19): A Disease of the Vascular Endothelium. Ser. Cardiol. Res. 2020;2(1): 23-27.
  12. Rao GHR. Prevention or reversal of cardiometabolic diseases. J Clin & Prevent. Cardiol. 2018 (7): 22-28.
  13. Jahangiry L, Farhangi MA, Rezaei F. Framingham risk score for estimation of 10-years of cardiovascular diseases risk in patients with metabolic syndrome. J Health Popul Nutr. 2017 Nov 13;36(1):36. doi: 10.1186/s41043-017-0114-0. 
  14. Gordon T, Kannel WB, Halperin M. Predictability of coronary heart disease. J Chronic Dis. 1979;32(6):427-40. doi: 10.1016/0021-9681(79)90103-6. 
  15. Gordon T, Kannel WB. Multiple risk functions for predicting coronary heart disease: the concept, accuracy, and application. Am Heart J. 1982 Jun;103(6):1031-9. doi: 10.1016/0002-8703(82)90567-1. 
  16. Wilson PW, D'Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation. 1998 May 12;97(18):1837-47. doi: 10.1161/01.cir.97.18.1837. 
  17. Hageman SHJ, Pennells L, Pajouheshnia R, et al. The value of additional risk factors for improving 1-year cardiovascular risk prediction in apparently healthy people. Euro Heart J. 2022; 43(2):ehac544.2277.
  18. Ridker PM, Rifai N, Rose L, Buring JE, Cook NR. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med. 2002 Nov 14;347(20):1557-65. doi: 10.1056/NEJMoa021993. 
  19. Comarow A. A message from the heart. US News World Rep. 2002 Nov 25;133(20):54-6, 59-60, 61. 
  20. Wang J, Wu X, Sun J, Xu T, Zhu T, Yu F, et al. Prediction of major adverse cardiovascular events in patients with acute coronary syndrome: Development and validation of a non-invasive nomogram model based on autonomic nervous system assessment. Front Cardiovasc Med. 2022 Nov 3;9:1053470. doi: 10.3389/fcvm.2022.1053470.
  21. Ambale-Venkatesh B, Yang X, Wu CO, Liu K, Hundley WG, McClelland R, et al. Cardiovascular Event Prediction by Machine Learning: The Multi-Ethnic Study of Atherosclerosis. Circ Res. 2017 Oct 13;121(9):1092-1101. doi: 10.1161/CIRCRESAHA.117.311312. 
  22. Cabral BP, Braga LAM, Syed-Abdul S, Mota FB. Future of Artificial Intelligence Applications in Cancer Care: A Global Cross-Sectional Survey of Researchers. Curr Oncol. 2023 Mar 16;30(3):3432-3446. doi: 10.3390/curroncol30030260.
  23. Hanefeld M, Pistrosch F, Bornstein SR, Birkenfeld AL. The metabolic vascular syndrome - guide to an individualized treatment. Rev Endocr Metab Disord. 2016 Mar;17(1):5-17. doi: 10.1007/s11154-016-9345-4. 
  24. Elyaspour Z, Zibaeenezhad MJ, Razmkhah M, Razeghian-Jahromi I. Is It All About Endothelial Dysfunction and Thrombosis Formation? The Secret of COVID-19. Clin Appl Thromb Hemost. 2021 Jan-Dec;27:10760296211042940. doi: 10.1177/10760296211042940.
  25. Rao GH. Physiology of blood platelet activation. Indian J Physiol Pharmacol. 1993 Oct;37(4):263-75. PMID: 8112802.
  26. Rao GHR. Handbook of Platelet Physiology and Pharmacology. Kluwer Academic Publishers, Boston. 1999.
  27. Rao GHR. Manual of Blood Platelets: Morphology, Physiology and Pharmacology. Jaypee Medical Publishers, New Delhi, India. 2019.hol
  28. Rao GHR, Gerrard JM, Cohen I, et al: Origin and role of calcium in platelet activation -contraction-secretion coupling. Cell Calcium Metabolism (Ed Gary Fiskum) Plenum Publishing Corp, 1989.
  29. Rao GHR. Physiology and Pharmacology of Platelets. Int J prog. Cardiovasc. Sci. 1995;2:108-110.
  30. Rao GH. Signal transduction, second messengers, and platelet function. J Lab Clin Med. 1993 Jan;121(1):18-20. 
  31. Rao GHR. Signa transduction, second messengers and platelet pharmacology. Pharmacol (Life sci) 1994;13:39-44.
  32. Koupenova M, Kehrel BE, Corkrey HA, Freedman JE. Thrombosis and platelets: an update. Eur Heart J. 2017 Mar 14;38(11):785-791. doi: 10.1093/eurheartj/ehw550. 
  33. Rao GHR: Altered Glucose Metabolism and Acute Vascular Events. J Clin Cardiol and Diag. 4(1): 9-16, 2022
  34. Gerrard JM, Stuart MJ, Rao GH, Steffes MW, Mauer SM, Brown DM, White JG. Alteration in the balance of prostaglandin and thromboxane synthesis in diabetic rats. J Lab Clin Med. 1980 Jun;95(6):950-8. 
  35. Rao GH. Platelet hyperfunction as risk factor for chronic and acute coronary events. Toxicol Mech Methods. 2005;15(6):425-31. doi: 10.1080/15376520500194759. 
  36. Massaguer A, Engel P, Tovar V, March S, Rigol M, Solanes N, et al. Characterization of platelet and soluble-porcine P-selectin (CD62P). Vet Immunol Immunopathol. 2003 Dec 15;96(3-4):169-81. doi: 10.1016/s0165-2427(03)00163-6. 
  37. Yun SH, Sim EH, Goh RY, Park JI, Han JY. Platelet Activation: The Mechanisms and Potential Biomarkers. Biomed Res Int. 2016;2016:9060143. doi: 10.1155/2016/9060143.
  38. Shattil SJ, Cunningham M, Hoxie JA. Detection of activated platelets in whole blood using activation-dependent monoclonal antibodies and flow cytometry. Blood. 1987 Jul;70(1):307-15.
  39. Szczuko M, Kozioł I, Kotlęga D, Brodowski J, Drozd A. The Role of Thromboxane in the Course and Treatment of Ischemic Stroke: Review. Int J Mol Sci. 2021 Oct 28;22(21):11644. doi: 10.3390/ijms222111644. 
  40. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, et al.; INTERHEART Study Investigators. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004 Sep 11-17;364(9438):937-52. doi: 10.1016/S0140-6736(04)17018-9. 
  41. O'Donnell MJ, Chin SL, Rangarajan S, Xavier D, Liu L, Zhang H, et al.; INTERSTROKE investigators. Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): a case-control study. Lancet. 2016 Aug 20;388(10046):761-75. doi: 10.1016/S0140-6736(16)30506-2.
  42. Zeng X, Deng A, Ding Y. The INTERSTROKE study on risk factors for stroke. Lancet. 2017 Jan 7;389(10064):35. doi: 10.1016/S0140-6736(16)32620-4. 
  43. Mensah GA, Wei GS, Sorlie PD, Fine LJ, Rosenberg Y, Kaufmann PG, et al. Decline in Cardiovascular Mortality: Possible Causes and Implications. Circ Res. 2017 Jan 20;120(2):366-380. doi: 10.1161/CIRCRESAHA.116.309115.
  44. Lopez AD, Adair T. Is the long-term decline in cardiovascular-disease mortality in high-income countries over? Evidence from national vital statistics. Int J Epidemiol. 2019 Dec 1;48(6):1815-1823. doi: 10.1093/ije/dyz143.
  45. Di Cesare M, Bennett JE, Best N, Stevens GA, Danaei G, Ezzati M. The contributions of risk factor trends to cardiometabolic mortality decline in 26 industrialized countries. Int J Epidemiol. 2013 Jun;42(3):838-48. doi: 10.1093/ije/dyt063.
  46. Khera AV, Emdin CA, Drake I, Natarajan P, Bick AG, Cook NR, et al.  Genetic Risk, Adherence to a Healthy Lifestyle, and Coronary Disease. N Engl J Med. 2016 Dec 15;375(24):2349-2358. doi: 10.1056/NEJMoa1605086.
  47. Conrad N, Judge A, Tran J, Mohseni H, Hedgecott D, Crespillo AP, et al.  Temporal trends and patterns in heart failure incidence: a population-based study of 4 million individuals. Lancet. 2018 Feb 10;391(10120):572-580. doi: 10.1016/S0140-6736(17)32520-5.
  48. Nowbar AN, Gitto M, Howard JP, Francis DP, Al-Lamee R. Mortality From Ischemic Heart Disease. Circ Cardiovasc Qual Outcomes. 2019 Jun;12(6):e005375. doi: 10.1161/CIRCOUTCOMES.118.005375. 
  49. Joshi M, Melo DP, Ouyang D, Slomka PJ, Williams MC, Dey D. Current and Future Applications of Artificial Intelligence in Cardiac CT. Curr Cardiol Rep. 2023 Mar;25(3):109-117. doi: 10.1007/s11886-022-01837-8. 
  50. Krittanawong C, Zhang H, Wang Z, Aydar M, Kitai T. Artificial Intelligence in Precision Cardiovascular Medicine. J Am Coll Cardiol. 2017 May 30;69(21):2657-2664. doi: 10.1016/j.jacc.2017.03.571.
  51. Paraskevas KI, Saba L, Suri JS. Applications of Artificial Intelligence in Vascular Diseases. Angiology. 2022 Aug;73(7):597-598. doi: 10.1177/00033197221087779. 
  52. Mathur P, Srivastava S, Xu X, Mehta JL. Artificial Intelligence, Machine Learning, and Cardiovascular Disease. Clin Med Insights Cardiol. 2020 Sep 9;14:1179546820927404. doi: 10.1177/1179546820927404. 
  53. Karatzia L, Aung N, Aksentijevic D. Artificial intelligence in cardiology: Hope for the future and power for the present. Front Cardiovasc Med. 2022 Oct 13;9:945726. doi: 10.3389/fcvm.2022.945726. 
  54. Ihdayhid AR, Lan NSR, Williams M, Newby D, Flack J, Kwok S, et al. Evaluation of an artificial intelligence coronary artery calcium scoring model from computed tomography. Eur Radiol. 2023 Jan;33(1):321-329. doi: 10.1007/s00330-022-09028-3. 
  55. Patel B, Sengupta P. Machine learning for predicting cardiac events: what does the future hold? Expert Rev Cardiovasc Ther. 2020 Feb;18(2):77-84. doi: 10.1080/14779072.2020.1732208.
  56. Berger JS. Aspirin for Primary Prevention-Time to Rethink Our Approach. JAMA Netw Open. 2022 Apr 1;5(4):e2210144. doi: 10.1001/jamanetworkopen.2022.10144. 
  57. Lloyd-Jones DM, Braun LT, Ndumele CE, Smith SC Jr, Sperling LS, Virani SS, Blumenthal RS. Use of Risk Assessment Tools to Guide Decision-Making in the Primary Prevention of Atherosclerotic Cardiovascular Disease: A Special Report From the American Heart Association and American College of Cardiology. Circulation. 2019 Jun 18;139(25):e1162-e1177. doi: 10.1161/CIR.0000000000000638.
  58. Lin A, Kolossváry M, Motwani M, Išgum I, Maurovich-Horvat P, Slomka PJ, Dey D. Artificial Intelligence in Cardiovascular Imaging for Risk Stratification in Coronary Artery Disease. Radiol Cardiothorac Imaging. 2021 Feb 25;3(1):e200512. doi: 10.1148/ryct.2021200512.
  59. Pal M, Parija S, Panda G, Dhama K, Mohapatra RK. Risk prediction of cardiovascular disease using machine learning classifiers. Open Med (Wars). 2022 Jun 17;17(1):1100-1113. doi: 10.1515/med-2022-0508. 
  60. Yi JK, Rim TH, Park S, Kim SS, Kim HC, Lee CJ, et al. Cardiovascular disease risk assessment using a deep-learning-based retinal biomarker: a comparison with existing risk scores. Eur Heart J Digit Health. 2023 Mar 28;4(3):236-244. doi: 10.1093/ehjdh/ztad023.
  61. Haupt CE, Marks M. AI-Generated Medical Advice-GPT and Beyond. JAMA. 2023 Apr 25;329(16):1349-1350. doi: 10.1001/jama.2023.5321.
  62. Wilson PW, Pencina M, Jacques P, Selhub J, D'Agostino R Sr, O'Donnell CJ. C-reactive protein and reclassification of cardiovascular risk in the Framingham Heart Study. Circ Cardiovasc Qual Outcomes. 2008 Nov;1(2):92-7. doi: 10.1161/CIRCOUTCOMES.108.831198.

Download Article
Received May 27, 2023.
Accepted August 17, 2023.
©2023 International Medical Research and Development Corporation.