The Aminoglycoside Resistance Genes, pehX, blaCTXM, blaAmpC, and npsB among Klebsiella oxytoca Stool Samples

Mohanad H. Hussein, Hasan A. Aal Owaif, Sura A. Abdulateef

 
International Journal of Biomedicine. 2023;13(3):127-130.
DOI: 10.21103/Article13(3)_OA13
Originally published September 5, 2023

Abstract: 

Background: Klebsiella oxytoca may cause various infections, including respiratory, urinary, and bloodstream infections, often with multidrug-resistant strains posing challenges in treatment. The aim of this study was for molecular identification of K. oxytoca and to assess the existence of aminoglycoside resistance genes in biofilm and in toxin-producing and AmpC-positive isolates.
Methods and Results: A total of 400 non-duplicate stool samples were collected from patients with colitis from 2019 to 2020 and were immediately cultured onto McConkey and blood agar (Merk, Germany). Antibiotic discs and Mueller-Hinton agar (MHA) culture medium (Merck, Germany) were used for antimicrobial susceptibility testing. The disk diffusion was done for susceptibility examination of them using CLSI 2020. Phenotypic detection of AmpC enzymes and biofilm formation were also determined. The PCR was performed to detect polygalacturonase (pehX) gene, blaCTX-M genenpsB toxin-encoding gene, blaAmpC gene, and the aac(6′)-lb and aac(3′)-IIa AMEs genes. 
A total of 100 K. oxytoca were identified from stool samples. Most isolates were not susceptible to tetracycline, cotrimoxazole, or cefoxitin disks. Moreover, most were susceptible to amikacin and piperacillin-tazobactam disks. Among 100 isolates, 54% produced the AmpC enzyme in the combined disk method. Among them, 30 isolates were resistant to gentamicin. Strong biofilm formation was determined in 66% of isolates, and 30% of them produced moderate biofilms. Moreover, 4% of the isolates had weak biofilms. Among the 60 gentamicin-resistant K. oxytoca, 32 isolates had strong biofilms, and 11 isolates produced moderate ones. The pehX was used for the molecular identification of K. oxytoca; the results showed the presence of this gene in all isolates. The majority (98%) of K. oxytoca amplified the npsB toxin-encoding gene. The rate of blaCTX-M, blaAmpC, aac(6′)-lb, and aac(3)-IIa genes were 62%, 45%, 12%, 24%, respectively.
Conclusion: In our study, more than half of K. oxytoca showed MDR phenotype. Moreover, half of the isolates carried the blaAmpC and blaCTX-M genes. Strong biofilm formation was observed in more than 60% of them.

Keywords: 
Klebsiella oxytoca • aminoglycoside resistance • biofilm
References: 
  1. Beaugerie L, Metz M, Barbut F, et al. Klebsiella oxytoca as an agent of antibiotic-associated hemorrhagic colitis. Clin Gastroenterol Hepatol. 2003;1(5):370-376. doi: 10.1053/s1542-3565(03)00183-6.
  2. Joainig MM, Gorkiewicz G, Leitner E, et al. Cytotoxic Effects of Klebsiella oxytoca Strains Isolated from Patients with Antibiotic-associated Hemorrhagic Colitis or Other Diseases Caused by Infections and from Healthy Subjects. J Clin Microbiol. 2010;48(3):817-824. doi:10.1128/JCM.01741-09.
  3. Ghasemian A, Mobarez AM, Peerayeh SN, et al. Report of Plasmid-mediated Colistin Resistance in Klebsiella oxytoca from Iran. Rev Res Med Microbiol. 2018;29(2):59-63. doi:10.1097/MRM.0000000000000134.
  4. Ghasemian A, Mobarez AM, Peerayeh SN, et al. Expression of Adhesin Genes and Biofilm Formation among Klebsiella oxytoca Clinical Isolates from Patients with Antibiotic-associated Hemorrhagic Colitis. J Med Microbiol. 2019;68(7):978-985. doi: 10.1099/jmm.0.000965.
  5. Bradford PA. Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev. 2001 Oct;14(4):933-51, table of contents. doi: 10.1128/CMR.14.4.933-951.2001. 
  6. Di Domenico EG, Farulla I, Prignano G, et al. Biofilm is a Major Virulence Determinant in Bacterial Colonization of Chronic Skin Ulcers Independently from the Multidrug Resistant Phenotype. Int J Mol Sci. 2017;18(5):1077. doi: 10.3390/ijms18051077.
  7. Stahlhut SG, Struve C, Krogfelt KA, Reisner A. Biofilm Formation of Klebsiella pneumoniae on Urethral Catheters Requires Either Type 1 or Type 3 Fimbriae. FEMS Immunol Med Microbiol. 2012;65(2):350-359.doi: 10.1111/j.1574-695X.2012.00965.x.
  8. Oydanich M, Dingle TC, Hamula CL, et al. Retrospective Report of Antimicrobial Susceptibility Observed in Bacterial Pathogens Isolated from Ocular Samples at Mount Sinai Hospital, 2010 to 2015. Antimicrob Resist Infect Control. 2017;6:29. doi.org/10.1186/s13756-017-0185-0.
  9. Jacoby GA. AmpC β-Lactamases. Clin Microbiol Rev. 2009;22(1):161-182. doi: 10.1128/CMR.00036-08.
  10. Shahid M, Sobia F, Singh A, et al. AmpC β-lactamases and Bacterial Resistance: An Updated Mini Review. Rev Med Microbiol. 2009;20(3):41-55. doi: 10.1097/MRM.0b013e328331ad83.
  11. Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995 Jun;39(6):1211-33. doi: 10.1128/AAC.39.6.1211. 
  12. Rayamajhi N, Kang SG, Lee DY, et al. Characterization of TEM-, SHV- and AmpC-type β-lactamases from Cephalosporin-resistant Enterobacteriaceae Isolated from Swine. Int J Food Microbiol. 2008;124(2):183-187. doi: 10.1016/j.ijfoodmicro.2008.03.009.
  13. Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing. Approved Standard. CLSI Document M100, 2020.
  14. Ahmed AM, Nakano H, Shimamoto T. The First Characterization of Extended-spectrum β-lactamase-producing Salmonella in Japan. J Antimicrob Chemother. 2004;54(1):283-284. doi: 10.1093/jac/dkh300. Epub 2004 Jun 9.
  15. Aal Owaif HA, Mhawesh AA, Abdulateef SA. The role of BipA in the regulation of K1 capsular polysaccharide production of uropathogenic Escherichia coli. Ann Trop Med Public Health. 2019;22 (Special Issue):S254. doi: 10.36295/ASRO.2019.220924.
  16. Shrief R, Hassan RH, Zaki MES, Rizk MA. Molecular Study of Klebsiella Oxytoca Associated with Urinary Tract Infection in Children. Open Microbiol J. 2022;16:1-8. doi:10.2174/18742858-v16-e2201070.
  17. Kovtunovych G, Lytvynenko T, Negrutska V, Lar O, Brisse S, Kozyrovska N. Identification of Klebsiella oxytoca using a specific PCR assay targeting the polygalacturonase pehX gene. Res Microbiol. 2003;154(8):587-592. doi: 10.1016/S0923-2508(03)00148-7.
  18. Ghasemian A, Mobarez AM, Peerayeh SN, Bezmin Abadi AT. The association of surface adhesin genes and the biofilm formation among Klebsiella oxytoca clinical isolates. New Microbes New Infect. 2019;27:36-39. doi: 10.1016/j.nmni.2018.07.001.
  19. Liu X, Liu Y. Detection and genotype analysis of AmpC β-lactamase in Klebsiella pneumoniae from tertiary hospitals. Exp Ther Med. 2016;12:480-484. doi: 10.3892/etm.2016.3295.
  20. Ghotaslou R, Sefidan FY, Akhi MT, Asgharzadeh M, Asl YM. Dissemination of Genes Encoding Aminoglycoside-Modifying Enzymes and armA Among Enterobacteriaceae Isolates in Northwest Iran. Microb Drug Resist. 2017;23(7):826-832. doi: 10.1089/mdr.2016.0224.
  21. Cheng VCC, Yam W-C, Tsang L-L, et al. Epidemiology of Klebsiella oxytoca-associated Diarrhea Detected by Simmons Citrate Agar Supplemented with Inositol, Tryptophan and Bile Salts. J Clin Microbiol. 2012;50(5):1571-1579. doi: 10.1128/JCM.00163-12.
  22. Conejo MC, Domínguez MC, López-Cerero L. Isolation of Multidrug-resistant Klebsiella oxytoca Carrying blaIMP-8, associated with OXY Hyperproduction, in the Intensive Care Unit of a Community Hospital in Spain. J Antimicrob Chemother. 2010;65(5):1071-1073. doi: 10.1093/jac/dkq063.
  23. Younes A, Hamouda A, Amyes SFB. First Report of A Novel Extended-spectrum Beta-lactamase KOXY-2 Producing Klebsiella oxytoca that Hydrolyses Ceftazidime. J Chemother. 2011;23(3):127-130. doi: 10.1179/joc.2011.23.3.127.
  24. Wong D, van Duin D. Novel Beta-lactamase Inhibitors: Unlocking Their Potential in Therapy. Drugs. 2017;77(6):615-628. doi: 10.1007/s40265-017-0725-1.
  25. Shibu P, McCuaig F, McCartney AL, et al. Improved Molecular Characterization of the Klebsiella oxytoca Complex Reveals the Prevalence of the Kleboxymycin Biosynthetic Gene Cluster. Microb Genom. 2021;7(7):000592. doi: 10.1099/mgen.0.000592.
  26. Iroha IR, Okeh EN, Moses IB, et al. Prevalence and Antibiotic Susceptibility Patterns of Extended Spectrum Beta-Lactamase-producing Klebsiella oxytoca Isolated from Urine Samples of Patients Visiting Private Laboratories in Abakaliki Metropolis. Afr J Microbiol Res. 2019;13(28):538-543. doi: 10.5897/AJMR2019.9154.
  27. Kumar D, Anjum N, Singh S, et al. A Study on Prevalence, Virulence Factors and Antibiotic Susceptibility of Klebsiella oxytoca Isolates in a Tertiary Care Centre. Asian Pac J Health Sci. 2019;6(1):28-32. doi:10.21276/apjhs.2019.6.1.4.
  28. AL-Khikani FHO, Abadi RM, Ayit AS. Emerging Carbapenemase Klebsiella oxytoca with Multidrug Resistance Implicated in Urinary Tract Infection. Biomed Biotechnol Res J. 2020;4:148-151. doi:10.4103/bbrj.bbrj_165_19.
  29. Zhang Y, Zhou H, Shen X-Q, et al. Plasmid-borne armA Methylase Gene, Together with blaCTX-M-15 and blaTEM-1, in a Klebsiella oxytoca Isolate from China. J Med Microbiol. 2008;57(Pt10):1273-1276. doi: 10.1099/jmm.0.2008/001271-0.
  30. Abdulateef SA, Hussein MH, Al-Saffar AZ. In vitro Cytotoxic and Genotoxic of Lipopolysaccharide Isolated from Klebsiella pneumoniae AS1 on MCF-7 Human Breast Tumor Cell Line. International Journal of Drug Delivery Technology.2021;11(1):184-189. doi: 10.25258/ijddt.11.1.34.

Download Article
Received May 17, 2023.
Accepted June 27, 2023.
©2023 International Medical Research and Development Corporation.