The Immune Profile of the Endometrium in the "Uterine Factor" of Infertility

Miroslava L. Polina, Victor E. Radzinsky, Ludmila M. Mikhaleva, Irina I. Vityazeva, Marina B. Khamoshina, Sergey А. Mikhalev, Natalya I. Douglas

 
International Journal of Biomedicine. 2023;13(4):255-260.
DOI: 10.21103/Article13(4)_OA4
Originally published December 5, 2023

Abstract: 

Background: This study aimed to investigate the endometrial characteristics (pathomorphological and immunological) of women with infertility.
Methods and Results: Data from an immunohistochemical study of endometrial biopsies (TNF-α, IL-10, GM-CSF, CXCL16, BCA1, TGF-β1) collected during the “implantation window” and microbiota studied by real-time polymerase chain reaction in 171 patients (21 women with unexplained infertility, 36 - chronic endometritis, 74 - tubal-peritoneal infertility, 22 - external genital endometriosis, 8 - "thin" endometrium, and 10 healthy fertile women from the comparison group) were analyzed to identify molecular signatures. Chronic endometritis was verified morphologically and immunohistochemically.
Each group revealed different immune endometrial phenotypes. The basis of the "normal" phenotype was a controlled immune inflammation and a Lactobacillus-dominant microbiota (LDM) type. In contrast to the comparison group, in the group with the phenotype of chronic inflammation, an excessive immune response (overexpression of TNF-α, GM-CSF, CXCL16, BCA1, and a decrease in IL-10 and TGF-β1 in glandular epithelium and stroma) was determined on the background of non-Lactobacillus-dominated microbiota (NLDM) type (63.3%) (P<0.001). The peculiar feature of a dysplastic phenotype was a "poor" immune response, with maximal TGF-β1 overexpression (P<0.001) and a NLDM type (47.1%). We determined an excessive immune response in the proliferative endometrial phenotype (GM-CSF overexpression by 1.2 times in the glandular epithelium and stroma [P<0.001 in both cases] and a decrease in IL-10 by 1.6 times in the glandular epithelium and 1.2 times in the stroma [P<0.001 in both cases]). Uterine microbiome disorders were detected less frequently than in patients with the inflammation phenotype (31.6%) (P=0.01). In the phenotype with impaired immune status, there was a decrease in GM-CSF, BCA1, CXCL16, TNF-α, and IL-10 markers in both endometrial compartments (P<0.001) with a LDM type (81.2%).
Conclusion. The molecular signatures of the endometrium are due to the heterogeneity of immune factors and microbiota. Aberrant expression of immune factors may contribute to the formation of a microenvironment unfavorable for blastocyst implantation.

Keywords: 
infertility • "implantation window" phase • molecular phenotype • cytokines • "receptive" endometrium
References: 
  1. Ticconi C, Pietropolli A, Di Simone N, Piccione E, Fazleabas A. Endometrial Immune Dysfunction in Recurrent Pregnancy Loss. Int J Mol Sci. 2019 Oct 26;20(21):5332. doi: 10.3390/ijms20215332.
  2. Moffett A, Colucci F. Co-evolution of NK receptors and HLA ligands in humans is driven by reproduction. Immunol Rev. 2015 Sep;267(1):283-97. doi: 10.1111/imr.12323.
  3. Huang J, Qin H, Yang Y, Chen X, Zhang J, Laird S, Wang CC, Chan TF, Li TC. A comparison of transcriptomic profiles in endometrium during window of implantation between women with unexplained recurrent implantation failure and recurrent miscarriage. Reproduction. 2017 Jun;153(6):749-758. doi: 10.1530/REP-16-0574.
  4. Agostinis C, Mangogna A, Bossi F, Ricci G, Kishore U, Bulla R. Uterine Immunity and Microbiota: A Shifting Paradigm. Front Immunol. 2019 Oct 17;10:2387. doi: 10.3389/fimmu.2019.02387. 
  5. Giudice LC. Challenging dogma: the endometrium has a microbiome with functional consequences! Am J Obstet Gynecol. 2016 Dec;215(6):682-683. doi: 10.1016/j.ajog.2016.09.085.
  6. Riganelli L, Iebba V, Piccioni M, Illuminati I, Bonfiglio G, Neroni B, Calvo L, Gagliardi A, Levrero M, Merlino L, Mariani M, Capri O, Pietrangeli D, Schippa S, Guerrieri F. Structural Variations of Vaginal and Endometrial Microbiota: Hints on Female Infertility. Front Cell Infect Microbiol. 2020 Jul 14;10:350. doi: 10.3389/fcimb.2020.00350. 
  7. Bracewell-Milnes T, Saso S, Nikolaou D, Norman-Taylor J, Johnson M, Thum MY. Investigating the effect of an abnormal cervico-vaginal and endometrial microbiome on assisted reproductive technologies: A systematic review. Am J Reprod Immunol. 2018 Nov;80(5):e13037. doi: 10.1111/aji.13037. 
  8. Wu L, Liao A, Gilman-Sachs A, Kwak-Kim J. T cell-related endometrial gene expression in normal and complicated pregnancies. In: Kwak-Kim J. editor. Endometrial Gene Expression: An Emerging Paradigm for Reproductive Disorders. Cham: Springer International Publishing. 2020:51–66. doi: 10.1007/978-3-030-28584-5
  9. Robertson SA, Care AS, Moldenhauer LM. Regulatory T cells in embryo implantation and the immune response to pregnancy. J Clin Invest. 2018 Oct 1;128(10):4224-4235. doi: 10.1172/JCI122182. 
  10. Moreno I, Codoñer FM, Vilella F, Valbuena D, Martinez-Blanch JF, Jimenez-Almazán J, Alonso R, Alamá P, Remohí J, Pellicer A, Ramon D, Simon C. Evidence that the endometrial microbiota has an effect on implantation success or failure. Am J Obstet Gynecol. 2016 Dec;215(6):684-703. doi: 10.1016/j.ajog.2016.09.075. 
  11. Power ML, Quaglieri C, Schulkin J. Reproductive Microbiomes: A New Thread in the Microbial Network. Reprod Sci. 2017 Nov;24(11):1482-1492. doi: 10.1177/1933719117698577.
  12. Chen P, Yang M, Wang Y, Guo Y, Liu Y, Fang C, Li T. Aging endometrium in young women: molecular classification of endometrial aging-based markers in women younger than 35 years with recurrent implantation failure. J Assist Reprod Genet. 2022 Sep;39(9):2143-2151. doi: 10.1007/s10815-022-02578-x.
  13. Salma U, Xue M, Ali Sheikh MS, Guan X, Xu B, Zhang A, Huang L, Xu D. Role of Transforming Growth Factor-β1 and Smads Signaling Pathway in Intrauterine Adhesion. Mediators Inflamm. 2016;2016:4158287. doi: 10.1155/2016/4158287. 
  14. Deshmukh H, Way SS. Immunological Basis for Recurrent Fetal Loss and Pregnancy Complications. Annu Rev Pathol. 2019 Jan 24;14:185-210. doi: 10.1146/annurev-pathmechdis-012418-012743.
  15. von Hundelshausen P, Agten SM, Eckardt V, Blanchet X, Schmitt MM, Ippel H, Neideck C, Bidzhekov K, Leberzammer J, Wichapong K, Faussner A, Drechsler M, Grommes J, van Geffen JP, Li H, Ortega-Gomez A, Megens RT, Naumann R, Dijkgraaf I, Nicolaes GA, Döring Y, Soehnlein O, Lutgens E, Heemskerk JW, Koenen RR, Mayo KH, Hackeng TM, Weber C. Chemokine interactome mapping enables tailored intervention in acute and chronic inflammation. Sci Transl Med. 2017 Apr 5;9(384):eaah6650. doi: 10.1126/scitranslmed.aah6650.
  16. Cai L. Preliminary study on the mechanism of uterine flora on the occurrence and development of endometrial hyperplasia. Jinan University. 2019;2:44. doi:  10.27167/d.cnki.gjinu.2019.000458.
  17. Kubyshkin AV, Aliev LL, Fomochkina II, Kovalenko YP, Litvinova SV, Filonenko TG, Lomakin NV, Kubyshkin VA, Karapetian OV. Endometrial hyperplasia-related inflammation: its role in the development and progression of endometrial hyperplasia. Inflamm Res. 2016 Oct;65(10):785-94. doi: 10.1007/s00011-016-0960-z. 

Download Article
Received August 25, 2023.
Accepted September 25, 2023.
©2023 International Medical Research and Development Corporation.