Cardiometabolic Risk Factors and Its Association with Hyperandrogenemia Among Sudanese Reproductive Women with Polycystic Ovary Syndrome

Abdelgadir Elmugadam, Samia M Alhassan, Ghada A Elfadil, Abdelgadir Altoum, May Khalil Ismail, Samia Mahdi Ahmed

International Journal of Biomedicine. 2023;13(4):261-268.
DOI: 10.21103/Article13(4)_OA5
Originally published December 5, 2023


Background: Risk factors for cardiovascular disease (CVD) are more common and frequently occur among PCOS women. The objective of this study was to evaluate atherogenic index of plasma (AIP) as a predictor of CVD and its association with hyperandrogenemia among PCOS women.
Methods and Results: This hospital-based study, conducted in Khartoum (Sudan) from October 2020 to September 2021, used a case-control design. The patients (n=150) were women with diagnosed PCOS, according to Rotterdam criteria. The controls were 150 infertile women who did not have PCOS. An ELISA reader (ASYS Expert Plus Microplate, Austria) was used to quantify serum insulin, luteinizing hormone (LH), follicle-stimulating hormone (FSH), and anti-Mullerian hormone (AMH) by indirect methods and total testosterone (TT) by competitive method during the follicular phase of the menstrual cycle. Serum samples of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and fasting plasma glucose (FPG) were assayed on the Cobas c311 system (Roche Diagnostics GmbH, Germany). The triglyceride–glucose index (TyGI) and TyGI-BMI, as a marker for insulin resistance (IR), were calculated. The logarithmically converted ratio of the molar concentrations of TG to HDL-C was used to determine the AIP. Low CVD risk was defined as < 0.1, medium risk as 0.1‒ 0.24 and high risk as >0.24.
PCOS women had a significant increase in BMI, compared to non-PCOS (P<0.05). Moreover, 73.4% of PCOS women were overweight to obese. PCOS women were found to have significantly increased serum levels of TC, TG, and LDL-C, as well as significantly increased levels of HOMA-IR and AIP, and a significantly decreased level of HDL-C, compared with non-PCOS women. Overall, among PCOS women, 30.0% had high TC (≥200 mg/dL), 24.7% - high TG (≥150 mg/dL), 29.3% - high LDL-C (≥130 mg/dL), and 46.7% - lower HDL-C (<40 mg/dL). Moreover, 40.6% of PCOS women had medium-to-high CVD risk, and their mean AIP was >0.1.
PCOS women with hyperandrogenemia showed significantly increased AIP and decreased HDL-C. Additionally, about 73% of PCOS women with hyperandrogenemia had lower HDL-C, and 29.9% had a high risk of CVD (AIP>0.24).
A Spearman correlation revealed that PCOS women’s TT correlates positively with TC, TG, TyGI, and AIP and inversely correlates with HDL-C. AIP positively correlates with TT, TC, TyGI, and TyGI-BMI index.
Conclusion: Our data revealed a significant occurrence of hyperandrogenemia, dyslipidemia, AIP, and obesity, all of which are considered risk factors for CVD in PCOS women.

PCOS • hyperandrogenemia • hyperlipidemia • atherogenic index of plasma
  1. Laslett LJ, Alagona P Jr, Clark BA 3rd, Drozda JP Jr, Saldivar F, Wilson SR, Poe C, Hart M. The worldwide environment of cardiovascular disease: prevalence, diagnosis, therapy, and policy issues: a report from the American College of Cardiology. J Am Coll Cardiol. 2012 Dec 25;60(25 Suppl):S1-49. doi: 10.1016/j.jacc.2012.11.002. 
  2. Daan NM, Louwers YV, Koster MP, Eijkemans MJ, de Rijke YB, Lentjes EW, Fauser BC, Laven JS. Cardiovascular and metabolic profiles amongst different polycystic ovary syndrome phenotypes: who is really at risk? Fertil Steril. 2014 Nov;102(5):1444-1451.e3. doi: 10.1016/j.fertnstert.2014.08.001.
  3. Gunning MN, Fauser BCJM. Are women with polycystic ovary syndrome at increased cardiovascular disease risk later in life? Climacteric. 2017 Jun;20(3):222-227. doi: 10.1080/13697137.2017.1316256. 
  4. Wolf WM, Wattick RA, Kinkade ON, Olfert MD. Geographical Prevalence of Polycystic Ovary Syndrome as Determined by Region and Race/Ethnicity. Int J Environ Res Public Health. 2018 Nov 20;15(11):2589. doi: 10.3390/ijerph15112589..
  5. Pinola P, Puukka K, Piltonen TT, Puurunen J, Vanky E, Sundström-Poromaa I, Stener-Victorin E, Lindén Hirschberg A, Ravn P, Skovsager Andersen M, Glintborg D, Mellembakken JR, Ruokonen A, Tapanainen JS, Morin-Papunen LC. Normo- and hyperandrogenic women with polycystic ovary syndrome exhibit an adverse metabolic profile through life. Fertil Steril. 2017 Mar;107(3):788-795.e2. doi: 10.1016/j.fertnstert.2016.12.017. 
  6. Schmidt J, Landin-Wilhelmsen K, Brännström M, Dahlgren E. Cardiovascular disease and risk factors in PCOS women of postmenopausal age: a 21-year controlled follow-up study. J Clin Endocrinol Metab. 2011 Dec;96(12):3794-803. doi: 10.1210/jc.2011-1677.
  7. Glintborg D. Endocrine and metabolic characteristics in polycystic ovary syndrome. Dan Med J. 2016 Apr;63(4):B5232. 
  8. Cengiz H, Kaya C, Suzen Caypinar S, Alay I. The relationship between menopausal symptoms and metabolic syndrome in postmenopausal women. J Obstet Gynaecol. 2019 May;39(4):529-533. doi: 10.1080/01443615.2018.1534812. 
  9. Aboonabi A, Meyer RR, Singh I. The association between metabolic syndrome components and the development of atherosclerosis. J Hum Hypertens. 2019 Dec;33(12):844-855. doi: 10.1038/s41371-019-0273-0. 
  10. Hernández JL, Baldeón C, López-Sundh AE, Ocejo-Vinyals JG, Blanco R, González-López MA. Atherogenic index of plasma is associated with the severity of Hidradenitis Suppurativa: a case-control study. Lipids Health Dis. 2020 Aug 29;19(1):200. doi: 10.1186/s12944-020-01377-6.
  11. Hernández JL, Olmos JM, Pariente E, Ramos C, Martínez J, Nan D. The atherogenic index of plasma is related to a degraded bone microarchitecture assessed by the trabecular bone score in postmenopausal women: The Camargo Cohort Study. Maturitas. 2021 Jun;148:1-6. doi: 10.1016/j.maturitas.2021.03.008.
  12. Dobiásová M, Frohlich J. The plasma parameter log (TG/HDL-C) as an atherogenic index: correlation with lipoprotein particle size and esterification rate in apoB-lipoprotein-depleted plasma (FER(HDL)). Clin Biochem. 2001 Oct;34(7):583-8. doi: 10.1016/s0009-9120(01)00263-6. 
  13. Nwagha UI, Ikekpeazu EJ, Ejezie FE, Neboh EE, Maduka IC. Atherogenic index of plasma as useful predictor of cardiovascular risk among postmenopausal women in Enugu, Nigeria. Afr Health Sci. 2010 Sep;10(3):248-52.
  14. Cho YR, Ann SH, Won KB, Park GM, Kim YG, Yang DH, Kang JW, Lim TH, Kim HK, Choe J, Lee SW, Kim YH, Kim SJ, Lee SG. Association between insulin resistance, hyperglycemia, and coronary artery disease according to the presence of diabetes. Sci Rep. 2019 Sep 2;9(1):6129. doi: 10.1038/s41598-019-42700-1. 
  15. Guerrero-Romero F, Simental-Mendía LE, González-Ortiz M, Martínez-Abundis E, Ramos-Zavala MG, Hernández-González SO, Jacques-Camarena O, Rodríguez-Morán M. The product of triglycerides and glucose, a simple measure of insulin sensitivity. Comparison with the euglycemic-hyperinsulinemic clamp. J Clin Endocrinol Metab. 2010 Jul;95(7):3347-51. doi: 10.1210/jc.2010-0288. 
  16. McLaughlin T, Reaven G, Abbasi F, Lamendola C, Saad M, Waters D, Simon J, Krauss RM. Is there a simple way to identify insulin-resistant individuals at increased risk of cardiovascular disease? Am J Cardiol. 2005 Aug 1;96(3):399-404. doi: 10.1016/j.amjcard.2005.03.085.
  17. Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril. 2004 Jan;81(1):19-25. doi: 10.1016/j.fertnstert.2003.10.004.
  18. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser. 2000;894:i-xii, 1-253. 
  19. Simental-Mendía LE, Rodríguez-Morán M, Guerrero-Romero F. The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab Syndr Relat Disord. 2008 Dec;6(4):299-304. doi: 10.1089/met.2008.0034. 
  20. Er LK, Wu S, Chou HH, Hsu LA, Teng MS, Sun YC, Ko YL. Triglyceride Glucose-Body Mass Index Is a Simple and Clinically Useful Surrogate Marker for Insulin Resistance in Nondiabetic Individuals. PLoS One. 2016 Mar 1;11(3):e0149731. doi: 10.1371/journal.pone.0149731.
  21. Alhassan SA, Elmugadam A, Abubaker NJ, Elfadil GA. Testosterone level correlates significantly with luteinizing hormone to follicle-stimulating hormone ratio among women with polycystic ovary syndrome: A cross sectional study. F1000Research 2022;11:152
  22. Mohammed S, Awooda HA, Rayis DA, Hamdan HZ, Adam I, Lutfi MF. Thyroid function/antibodies in sudanese women with polycystic ovarian disease. Obstet Gynecol Sci. 2017 Mar;60(2):187-192. doi: 10.5468/ogs.2017.60.2.187. 
  23. Al-Jefout M, Alnawaiseh N, Al-Qtaitat A. Insulin resistance and obesity among infertile women with different polycystic ovary syndrome phenotypes. Sci Rep. 2017 Jul 13;7(1):5339. doi: 10.1038/s41598-017-05717-y.
  24. Ezeh U, Yildiz BO, Azziz R. Referral bias in defining the phenotype and prevalence of obesity in polycystic ovary syndrome. J Clin Endocrinol Metab. 2013 Jun;98(6):E1088-96. doi: 10.1210/jc.2013-1295.
  25. Zhang J, Fan P, Liu H, Bai H, Wang Y, Zhang F. Apolipoprotein A-I and B levels, dyslipidemia and metabolic syndrome in south-west Chinese women with PCOS. Hum Reprod. 2012 Aug;27(8):2484-93. doi: 10.1093/humrep/des191. 
  26. Wild RA, Rizzo M, Clifton S, Carmina E. Lipid levels in polycystic ovary syndrome: systematic review and meta-analysis. Fertil Steril. 2011 Mar 1;95(3):1073-9.e1-11. doi: 10.1016/j.fertnstert.2010.12.027.
  27. Iuhas C-I, Costin N, Mihu D. Lipid parameters in patients with polycystic ovary syndrome. Appl Med Inf. 2012;31:27-32.
  28. Macut D, Bjekić-Macut J, Savić-Radojević A. Dyslipidemia and oxidative stress in PCOS. Front Horm Res. 2013;40:51-63. doi: 10.1159/000341683.
  29. Lath R, Shendye R, Jibhkate A. Insulin resistance and lipid profile in polycystic ovary syndrome. Asian J Biomed Pharm Sci. 2015;5:30
  30. Pergialiotis V, Trakakis E, Chrelias C, Papantoniou N, Hatziagelaki E. The impact of mild hypercholesterolemia on glycemic and hormonal profiles, menstrual characteristics and the ovarian morphology of women with polycystic ovarian syndrome. Horm Mol Biol Clin Investig. 2018 Mar 29;34(3):/j/hmbci.2018.34.issue-3/hmbci-2018-0002/hmbci-2018-0002.xml. 
  31. Tsouma I, Kouskouni E, Demeridou S, Boutsikou M, Hassiakos D, Chasiakou A, Hassiakou S, Gennimata V, Baka S. Lipid lipoprotein profile alterations in Greek infertile women with polycystic ovaries: influence of adipocytokines levels. In Vivo. 2014 Sep-Oct;28(5):935-9. 
  32. Ghaffarzad A, Amani R, Mehrzad Sadaghiani M, Darabi M, Cheraghian B. Correlation of Serum Lipoprotein Ratios with Insulin Resistance in Infertile Women with Polycystic Ovarian Syndrome: A Case Control Study. Int J Fertil Steril. 2016 Apr-Jun;10(1):29-35. doi: 10.22074/ijfs.2016.4765.
  33. Livadas S, Pappas C, Karachalios A, Marinakis E, Tolia N, Drakou M, Kaldrymides P, Panidis D, Diamanti-Kandarakis E. Prevalence and impact of hyperandrogenemia in 1,218 women with polycystic ovary syndrome. Endocrine. 2014 Nov;47(2):631-8. doi: 10.1007/s12020-014-0200-7.
  34. Alexiou E, Hatziagelaki E, Pergialiotis V, Chrelias C, Kassanos D, Siristatidis C, Kyrkou G, Kreatsa M, Trakakis E. Hyperandrogenemia in women with polycystic ovary syndrome: prevalence, characteristics and association with body mass index. Horm Mol Biol Clin Investig. 2017 Mar 1;29(3):105-111. doi: 10.1515/hmbci-2016-0047. 
  35. Sanchez-Garrido MA, Tena-Sempere M. Metabolic dysfunction in polycystic ovary syndrome: Pathogenic role of androgen excess and potential therapeutic strategies. Mol Metab. 2020 May;35:100937. doi: 10.1016/j.molmet.2020.01.001.
  36. O'Reilly MW, Taylor AE, Crabtree NJ, Hughes BA, Capper F, Crowley RK, Stewart PM, Tomlinson JW, Arlt W. Hyperandrogenemia predicts metabolic phenotype in polycystic ovary syndrome: the utility of serum androstenedione. J Clin Endocrinol Metab. 2014 Mar;99(3):1027-36. doi: 10.1210/jc.2013-3399.
  37. Szczuko M, Zapalowska-Chwyć M, Drozd R. A Low Glycemic Index Decreases Inflammation by Increasing the Concentration of Uric Acid and the Activity of Glutathione Peroxidase (GPx3) in Patients with Polycystic Ovary Syndrome (PCOS). Molecules. 2019 Apr 17;24(8):1508. doi: 10.3390/molecules24081508. 
  38. Bendzala M, Sabaka P, Caprnda M, Komornikova A, Bisahova M, Baneszova R, Petrovic D, Prosecky R, Rodrigo L, Kruzliak P, Dukat A. Atherogenic index of plasma is positively associated with the risk of all-cause death in elderly women: A 10-year follow-up. Wien Klin Wochenschr. 2017 Nov;129(21-22):793-798. doi: 10.1007/s00508-017-1264-1. 
  39. Khazaal MS. Atherogenic index of plasma as a parameter in predicting cardiovascular risk in males compared to the conventional dyslipidemic indices. Karbala Journal of Medicine. 2013;6:1506–1531
  40. Zhou Y, Wang X, Jiang Y, Ma H, Chen L, Lai C, Peng C, He C, Sun C. Association between polycystic ovary syndrome and the risk of stroke and all-cause mortality: insights from a meta-analysis. Gynecol Endocrinol. 2017 Dec;33(12):904-910. doi: 10.1080/09513590.2017.1347779. 
  41. Glintborg D, Rubin KH, Nybo M, Abrahamsen B, Andersen M. Cardiovascular disease in a nationwide population of Danish women with polycystic ovary syndrome. Cardiovasc Diabetol. 2018 Mar 8;17(1):37. doi: 10.1186/s12933-018-0680-5.
  42. Abashova EI, Yarmolinskaya MI, Bulgakova OL, Misharina EV. Lipid profile in women of reproductive age with various polycystic ovary syndrome phenotypes. Journal of Obstetrics and Women’s Diseases. 2020;69(6):7‑16
  43. Sánchez-Íñigo L, Navarro-González D, Fernández-Montero A, Pastrana-Delgado J, Martínez JA. The TyG index may predict the development of cardiovascular events. Eur J Clin Invest. 2016 Feb;46(2):189-97. doi: 10.1111/eci.12583. 
  44. Altoum AEA, Abbas MY, Osman AL, Ahmed S, Babker AM. The Influence of Oral Multivitamins Supplementation on Selected Oxidative Stress Parameters and Lipid Profiles among Sudanese Patients with Type-2 Diabetes. Open Access Maced J Med Sci. 2019 Feb 25;7(5):775-778. doi: 10.3889/oamjms.2019.137. 

Download Article
Received October 4, 2023.
Accepted November 10, 2023.
©2023 International Medical Research and Development Corporation.