The Antibiotic Resistance Genes blaSHV, blaOXA-48, blaTEM and blaIMP in Pseudomonas aeruginosa Isolated from Respiratory Tract Infections in Baghdad, Iraq

Hasan A. Aal Owaif, Mays K. Aldulaimy, Sura A. Abdulateef

 
International Journal of Biomedicine. 2023;13(4):341-344.
DOI: 10.21103/Article13(4)_OA18
Originally published December 5, 2023

Abstract: 

Background: Pseudomonas aeruginosa (P. aeruginosa) is the most common pathogen associated with respiratory tract infections. Our study aimed to detect the antibiotic resistance profile and some antibiotic resistance genes of local isolates of P. aeruginosa from respiratory tract infections and to determine the biofilm formation by these isolates.
Methods and Results: Two hundred sputum samples were obtained from patients with CF from different hospitals in Baghdad from November 2022 to February 2023. Biochemical tests and the VITEK-2 system were used to identify P. aeruginosa isolates. The disc diffusion technique was used in the antibiotic susceptibility test, and the results were identified according to CLSI guidelines 2020. Biofilm formation was performed by the microtiter-plate method and determined using an ELISA reader at OD570.  The PCR was performed to detect the blaSHV gene, blaTEM gene, blaIMP gene, and blaOXA-48 gene.
Sixty (30%) isolates of P. aeruginosa were identified from 200 sputum samples.The results showed that 93.4% of the isolates were resistant to Amoxicillin-Clavulanic acid, 90% to Nitrofurantoin and Cefepime, 88.4% to Cefotaxime, 85% to Doxycycline, 83.4% to Tobramycin, 81.7% to Tetracycline and 80% to Meropenem. In comparison, 91.6% were sensitive to Ofloxacin, 68.3% to Azithromycin, and 36.6% to Chloramphenicol. All P. aeruginosa isolates were identified as MDR. The results revealed that 55% of the isolates produced strong biofilms, 38.3% produced moderate biofilms, and 6.7% produced weak biofilms. The rates of blaSHV, blaTEM, blaIMP, and blaOXA-48 genes were 28.3%, 60%, 26.6%, and 68.3%, respectively.
Conclusion: This study revealed that all isolates showed MDR phenotype. Biofilm formation by P. aeruginosa isolates and the variation in the incidence of antibiotic resistance encoding genes, in addition to the abuse and overuse of antibiotics, are significant reasons for the progress and spread of antibiotic resistance.

Keywords: 
P. aeruginosa • cystic fibrosis • antibiotic resistance • biofilm
References: 
  1. Rostami S, Farajzadeh Sheikh A, Shoja S, Farahani A, Tabatabaiefar MA, Jolodar A, Sheikhi R. Investigating of four main carbapenem-resistance mechanisms in high-level carbapenem resistant Pseudomonas aeruginosa isolated from burn patients. J Chin Med Assoc. 2018 Feb;81(2):127-132. doi: 10.1016/j.jcma.2017.08.016.
  2. Sriramulu D. Evolution and impact of bacterial drug resistance in the context of cystic fibrosis disease and nosocomial settings. Microbiol Insights. 2013 Apr 14;6:29-36. doi: 10.4137/MBI.S10792.
  3. Imanah EO, Beshiru A, Igbinosa EO. Antibiogram profile of Pseudomonas aeruginosa isolated from some selected hospital environmental drains. Asian Pac J Trop Dis. 2017;7(10):604-609. doi: 10.12980/apjtd.7.2017D6-468.
  4. Azam MW, Khan AU. Updates on the pathogenicity status of Pseudomonas aeruginosa. Drug Discov Today. 2019 Jan;24(1):350-359. doi: 10.1016/j.drudis.2018.07.003.
  5. Kung VL, Ozer EA, Hauser AR. The accessory genome of Pseudomonas aeruginosa. Microbiol Mol Biol Rev. 2010 Dec;74(4):621-41. doi: 10.1128/MMBR.00027-10.
  6. Lambert PA. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. J R Soc Med. 2002;95 Suppl 41(Suppl 41):22-6.
  7. Yin R, Cheng J, Wang J, Li P, Lin J. Treatment of Pseudomonas aeruginosa infectious biofilms: Challenges and strategies. Front Microbiol. 2022 Aug 26;13:955286. doi: 10.3389/fmicb.2022.955286.
  8. Aal Owaif HA, Mhawesh AA, Abdulateef SA. The role of BipA in the regulation of K1 capsular polysaccharide production of uropathogenic Escherichia coli. Ann Trop Med Public Health. 2019;22 (Special Issue):S254. doi: 10.36295/ASRO.2019.220924.
  9. Abdulateef SA, Hussein MH, Al-Saffar AZ. In vitro Cytotoxic and Genotoxic of Lipopolysaccharide Isolated from Klebsiella pneumoniae AS1 on MCF-7 Human Breast Tumor Cell Line. International Journal of Drug Delivery Technology.2021;11(1):184-189. doi: 10.25258/ijddt.11.1.34.
  10. Lal P, Kapil A, Das BK, Sood S. Occurrence of TEM & SHV gene in extended spectrum beta-lactamases (ESBLs) producing Klebsiella sp. isolated from a tertiary care hospital. Indian J Med Res. 2007 Feb;125(2):173-8.
  11. Bali EB, Acik L, Sultan N. Phenotypic and molecular characterization of SHV, TEM, CTX-M and extended-spectrum beta-lactamase produced by Escherichia coli, Acinobacter baumannii and Klebsiella isolates in a Turkish hospital. Afr J Microbiol Res. 2010;4(8):650–654.
  12. Shahcheraghi F, Nobari S, Rahmati Ghezelgeh F, Nasiri S, Owlia P, Nikbin VS, Imani Fooladi AA. First report of New Delhi metallo-beta-lactamase-1-producing Klebsiella pneumoniae in Iran. Microb Drug Resist. 2013 Feb;19(1):30-6. doi: 10.1089/mdr.2012.0078.
  13. Poirel L, Bonnin RA, Nordmann P. Analysis of the resistome of a multidrug-resistant NDM-1-producing Escherichia coli strain by high-throughput genome sequencing. Antimicrob Agents Chemother. 2011 Sep;55(9):4224-9. doi: 10.1128/AAC.00165-11.
  14. Shiny PA, Rajendran S, Lakshmi Sarayu Y. A study on isolation and antibiotic sensitivity testing of Pseudomonas aeruginosa isolated from patients with respiratory tract infection with special reference to phenotypic and genotypic characterization of extended spectrum beta-lactamases (ESBL). Open Journal of Medical Microbiology. 2016;6:80-86. doi: 10.4236/ojmm.2016.62011.
  15. Wang LL, Lu HW, Li LL, Gao YH, Xu YH, Li HX, Xi YZ, Jiang FS, Ling XF, Wei W, Li FJ, Mao B, Jiang S, Xu JF. Pseudomonas aeruginosa isolation is an important predictor for recurrent hemoptysis after bronchial artery embolization in patients with idiopathic bronchiectasis: a multicenter cohort study. Respir Res. 2023 Mar 18;24(1):84. doi: 10.1186/s12931-023-02391-9.
  16. Dias SP, Brouwer MC, van de Beek D. Sex and Gender Differences in Bacterial Infections. Infect Immun. 2022 Oct 20;90(10):e0028322. doi: 10.1128/iai.00283-22.
  17. Motbainor H, Bereded F, Mulu W. Multi-drug resistance of blood stream, urinary tract and surgical site nosocomial infections of Acinetobacter baumannii and Pseudomonas aeruginosa among patients hospitalized at Felegehiwot referral hospital, Northwest Ethiopia: a cross-sectional study. BMC Infect Dis. 2020 Jan 30;20(1):92. doi: 10.1186/s12879-020-4811-8. 
  18. Abbas HA, El-Ganiny AM, Kamel HA. Phenotypic and genotypic detection of antibiotic resistance of Pseudomonas aeruginosa isolated from urinary tract infections. Afr Health Sci. 2018 Mar;18(1):11-21. doi: 10.4314/ahs.v18i1.3. 
  19. Hasan SA, Najati AM, Abass KS. Prevalence and antibiotic resistance of Pseudomonas aeruginosa isolated from clinical samples in Kirkuk City, Iraq. Eurasia J Biosci. 2020;14(1):1821-1825.
  20. Abdulateef SA, Al-Salmani MS, Aal Owaif HA. Acinetobacter baumannii producing ESBLs and carbapenemases in the Intensive Care Units developing fosfomycin and colistin resistance. Journal of Applied and Natural Science. 2023;15(3):1263-1267. doi:10.31018/jans.v15i3.4872.
  21. Shiralizadeh S, Keramat F, Hashemi SH, Majzoobi MM, Azimzadeh M, Alikhani MS, Karami P, Rahimi Z, Alikhani MY. Investigation of antimicrobial resistance patterns and molecular typing of Pseudomonas aeruginosa isolates among Coronavirus disease-19 patients. BMC Microbiol. 2023 Mar 29;23(1):84. doi: 10.1186/s12866-023-02825-w. 
  22. Ramadan HK, Mahmoud MA, Aburahma MZ, Elkhawaga AA, El-Mokhtar MA, Sayed IM, Hosni A, Hassany SM, Medhat MA. Predictors of Severity and Co-Infection Resistance Profile in COVID-19 Patients: First Report from Upper Egypt. Infect Drug Resist. 2020 Oct 5;13:3409-3422. doi: 10.2147/IDR.S272605.
  23. Farhan SM, Ibrahim RA, Mahran KM, Hetta HF, Abd El-Baky RM. Antimicrobial resistance pattern and molecular genetic distribution of metallo-β-lactamases producing Pseudomonas aeruginosa isolated from hospitals in Minia, Egypt. Infect Drug Resist. 2019 Jul 16;12:2125-2133. doi: 10.2147/IDR.S198373. 
  24. Miftode IL, Leca D, Miftode RS, Roşu F, Plesca C, Loghin I, Timpau AS, Mitu I, Mititiuc I, Dorneanu O, Miftode E. The Clash of the Titans: COVID-19, Carbapenem-Resistant Enterobacterales, and First mcr-1-Mediated Colistin Resistance in Humans in Romania. Antibiotics (Basel). 2023 Feb 3;12(2):324. doi: 10.3390/antibiotics12020324. 
  25. Yekani M, Memar MY, Alizadeh N, Safaei N, Ghotaslou R. Antibiotic resistance patterns of biofilm-forming Pseudomonas aeruginosa isolates from mechanically ventilated patients. International Journal of Scientific Study. 2017; 5(5): 84-88. doi: 10.17354/ijssI/2017/106.
  26. Hussein MH, Aal Owaif HA, Abdulateef SA. The Aminoglycoside Resistance Genes, pehX, blaCTX-M, blaAmpC, and npsB among Klebsiella oxytoca Stool Samples. International Journal of Biomedicine. 2023;13(3):127-130. doi:10.21103/Article13(3)_OA13.Top of Form
  27. Santos-Lopez A, Marshall CW, Scribner MR, Snyder DJ, Cooper VS. Evolutionary pathways to antibiotic resistance are dependent upon environmental structure and bacterial lifestyle. Elife. 2019 Sep 13;8:e47612. doi: 10.7554/eLife.47612. 

Download Article
Received September 30, 2023.
Accepted November 6, 2023.
©2023 International Medical Research and Development Corporation.