Effect of Surface Treatment Method of Light-Cured Material on Its Toxic Properties

Irina A. Shurygina, Ol'ga P. Belozerceva, Irina S. Trukhan, Natalia N. Dremina, Mikhail G. Shurygin

International Journal of Biomedicine. 2023;13(4):356-359.
DOI: 10.21103/Article13(4)_OA21
Originally published December 5, 2023


In recent decades, a large number of different nanocomposite materials have appeared, which have found wide application in almost all areas of life, including medicine. However, to date, the properties of these materials have not been completely studied. The evaluation of toxicity and biocompatibility is particularly relevant. In this regard, this study aimed to investigate the effect of the surface treatment method of light-cured material on its toxic properties for normal fibroblasts.
For this purpose, light-cured nanohybrid composite material Herculite XRV Ultra in the form of 10×5 mm plates (smooth and notched) were incubated with a culture of rat fibroblasts, after that, morphological changes were assessed, and "toxic exposure zones" (a distance from the test plate to a layer of intact fibroblasts) were measured. As a result, it was ascertained that although the investigated material has moderate toxicity to normal cells of the organism, the degree of the nanocomposite toxicity and, in particular, the size of the zone of toxic influence is significantly affected by the properties of its surface, depending on the mechanical action on the restorative material.

nanocomposite • light-curing material • fibroblasts • cell culture • BioStation CT
  1. Singh AK. Engineered nanoparticles: structure, properties and mechanisms of toxicity. MRS Bulletin. 2017;42(01):75. doi.org/10.1557/mrs.2016.320.
  2. De Matteis V, Rinaldi R. (). Toxicity Assessment in the Nanoparticle Era. Cellular and Molecular Toxicology of Nanoparticles. 2018:1–19. doi:10.1007/978-3-319-72041-8_1.
  3. Najahi-Missaoui W, Arnold RD, Cummings BS. Safe Nanoparticles: Are We There Yet? Int J Mol Sci. 2020;22(1): 385. doi: 10.3390/ijms22010385.
  4. Shurygina IA, Shurygin MG. Nanoparticles in wound healing and regeneration: Metal Nanoparticles in Pharma. Cham; 2017:21-38. doi:10.1007/978-3-319-63790-7_2.
  5. Shurygina IA, Shurygin MG. Perspectives of metal nanoparticles application for the purposes of regenerative medicine. Sibirskoe medicinskoe obozrenie. 2018;4(112):31-37. doi: 10.20333/2500136-2018-4-31-37.
  6. Stueber DD, Villanova J, Aponte I, Xiao Z, Colvin VL. Magnetic Nanoparticles in Biology and Medicine: Past, Present, and Future Trends. Pharmaceutics. 2021;13(7):943. doi: 10.3390/pharmaceutics13070943.
  7. Palin WM, Leprince JG, Hadis MA. Shining a light on high volume photocurable materials. Dent Mater. 2018;34(5):695-710. doi: 10.1016/j.dental.2018.02.009.
  8. Kosyreva TF, Voeykova OV. Clinical and laboratory studies of light-curing base material for the manufacture of intraoral orthodontic devices. Stomatologiia. 2021;100(5):58-61. doi: 10.17116/stomat202110005158.
  9. Permyakova AV, Nikolaev AI. Investigation of the strength characteristics of the composite restoration material of Russian production. Prikladnye informacionnye aspekty mediciny. 2020;23(2):64-69.
  10. Bayne SC, Ferracane JL, Marshall GW, Marshall SJ, van Noort R. The Evolution of Dental Materials over the Past Century: Silver and Gold to Tooth Color and Beyond. J Dent Res. 2019;98(3):257-265. doi: 10.1177/0022034518822808.
  11. Cadenaro M, Maravic T, Comba A, Mazzoni A, Fanfoni L, Hilton T, Ferracane J, Breschi L. The role of polymerization in adhesive dentistry. Dent Mater. 2019;35(1):e1-e22. doi: 10.1016/j.dental.2018.11.012.
  12. Mills RW, Jandt KD, Ashworth SH. Dental composite depth of cure with halogen and blue light emitting diode technology. Br Dent J. 1999;186(8):388-391. doi: 10.1038/sj.bdj.4800120.
  13. Shurygina IA, Trukhan IS, Dremina NN, Shurygin MG. Changes in oxidative phosphorylation activity in fibroblasts at p38 mapk pathway inhibition. International Journal of Biomedicine. 2019;9(4):350-355. doi.org/10.21103/Article9(4)_OA15.
  14. Nilsen BW, Mouhat M, Jokstad A. Quantification of porosity in composite resins delivered by injectable syringes using X-ray microtomography. Biomater Investig Dent. 2020;7(1):86-95. doi: 10.1080/26415275.2020.1784013.
  15. Borm PJA, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins R, Stone V, Kreyling W, Lademann J, Krutmann J, Warheit D, Oberdorster E. The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol. 2006;3:11. doi: 10.1186/1743-8977-3-11.
  16. Breschi L, Ferracane JL, Cadenaro M, Mazzoni A, Tom H. Adhesion to Enamel and Dentin. In: Fundamentals of Operative Dentistry: A Contemporary Approach. In Fundamentals of Operative Dentistry: A Contemporary Approach. 2013:207-224.
  17. Lin Y-T, Shie M-Y, Lin Y-H, Ho C-C, Kao C-T, Huang T-H. The Development of Light-Curable Calcium-Silicate-Containing Composites Used in Odontogenic Regeneration. Polymers (Basel). 2021;13(18):3107. doi: 10.3390/polym13183107.
  18. Fidalgo-Pereira R, Carpio D, Torres O, Carvalho O, Silva F, Henriques B, Özcan M, Souza JCM. The influence of inorganic fillers on the light transmission through resin-matrix composites during the light-curing procedure: an integrative review. Clin Oral Investig. 2022;26(9):5575-5594. doi: 10.1007/s00784-022-04589-5.
  19. Bukhary DM, Al-Zain AO, Alshali RZ, Bukhary DM, Abdalla AN, Youssef A-R. Effects of nanohybrid flowable resin-based composites on fibroblast viability using different light-curing units. J Prosthodont. 2023;32(7):625-632. doi: 10.1111/jopr.13599.
  20. Şişmanoğlu S, Demirci M, Schweikl H, Ozen-Eroglu G, Cetin-Aktas E, Kuruca S, Tuncer S, Tekce N. Cytotoxic effects of different self-adhesive resin cements: Cell viability and induction of apoptosis. J Adv Prosthodont. 2020;12(2):89-99. doi: 10.4047/jap.2020.12.2.89.
  21. Martinez-Gonzalez M, Fidalgo-Pereira RC, Torres O, Silva F, Henriques B, Özcan M, Souza JCM. Toxicity of resin-matrix cements in contact with fibroblast or mesenchymal cells. Odontology. 2022. doi: 10.1007/s10266-022-00758-w.
  22. Shurygina IA, Prozorova GF, Trukhan IS, Korzhova SA, Fadeeva TV, Pozdnyakov AS, Dremina NN, Emel’yanov AI, Kuznetsova NP, Shurygin MG. Nontoxic silver/poly-1-vinyl-1,2,4-triazole nanocomposite materials with antibacterial activity. Nanomaterials. 2020;10(8):1-17. doi:10.3390/nano10081477.
  23. Bowers LN, Ranpara AC, Roach KA, Knepp AK, Arnold ED, Stefaniak AB, Virji MA. Comparison of product safety data sheet ingredient lists with skin irritants and sensitizers present in a convenience sample of light-curing resins used in additive manufacturing. Regul Toxicol Pharmacol. 2022;133:105198. doi: 10.1016/j.yrtph.2022.105198.
  24. Missaoui WN, Arnold RD, Cummings BS. Toxicological status of nanoparticles: What we know and what we don't know. Chem Biol Interact. 2018;295:1-12. doi: 10.1016/j.cbi.2018.07.015.
  25. Nilsen BW, Mouhat M, Jokstad A. Quantification of porosity in composite resins delivered by injectable syringes using X-ray microtomography. Biomater Investig Dent. 2020;7(1):86-95. doi: 10.1080/26415275.2020.1784013.
  26. Gurbuz O, Cilingir A, Dikmen B, Ozsoy A, Mert Eren M. Effect of surface sealant on the surface roughness of different composites and evaluation of their microhardness. Eur Oral Res. 2020;54(1):1-8. doi: 10.26650/eor.20200020.
  27. Tărăboanță I, Gelețu G, Stoleriu S, Iovan G, Tofan N, Tărăboanță-Gamen AC, Georgescu A, Popa CG, Andrian S. In Vitro Evaluation of Gastric Acid and Toothbrushing Effect on the Surface State of Different Types of Composite Resins. Medicina (Kaunas). 2022;58(9):1281. doi: 10.3390/medicina58091281.
  28. Yılmaz C, Kanık Ö. Investigation of surface roughness values of various restorative materials after brushing with blue covarine containing whitening toothpaste by two different methods: AFM and profilometer. Microsc Res Tech. 2022;85(2):521-532. doi: 10.1002/jemt.23925.

Download Article
Received September 1, 2023.
Accepted November 1, 2023.
©2023 International Medical Research and Development Corporation.