Determination of the Optimal Parameters for Microwave Ablation of Liver Tumor

Nikola Bošković, Branislav Radjenović, Marija Radmilović-Radjenović

For citation: Bošković N, Radjenović B, Radmilović-Radjenović M. Determination of the Optimal Parameters for Microwave Ablation of Liver Tumor. International Journal of Biomedicine. 2024;14(2):291-294. doi:10.21103/Article14(2)_OA9
Originally published June 5, 2024


Microwave ablation is a minimally invasive cancer treatment with high survival and low recurrence rates. Despite the unquestionable benefits of microwave ablation, the interaction between the medical tool and the tissue may cause damage to the surrounding tissue, which can be removed by clarifying the conditions for their development. In addition to clinical methods, computer simulation has proven to be a very effective tool to optimize microwave ablation performance. This study aimed to determine the optimal input power for complete microwave tumor ablation with an adequate safety margin while avoiding injury to surrounding healthy tissue. The liver tumor model was based on a real tumor labeled 1.02 in the 3D-IRCADb-01 database. Calculations were performed for a 10-slot microwave antenna with a frequency of 2.45 GHz using COMSOL Multiphysics. The obtained simulation results revealed that with proper input power, the necrotic tissue was mainly located in the tumor with minimal damage to the surrounding healthy tissue. This study may represent a step forward in planning individual microwave ablation procedures for each patient.

liver tumor • microwave ablation • ablation zone • necrotic tissue
  1. Watson J, Hydon K, Lodge P. Primary and secondary liver tumours. InnovAiT 2016; 9(8):477-82. doi: 10.1177/1755738016653419
  2. Sia D, Villanueva A, Friedman SL, Llovet JM. Liver Cancer Cell of Origin, Molecular Class, and Effects on Patient Prognosis. Gastroenterology. 2017 Mar;152(4):745-761. doi: 10.1053/j.gastro.2016.11.048. Epub 2016 Dec 30. PMID: 28043904.
  3. Chen JG, Zhu J, Zhang YH, Chen YS, Lu JH, Zhu YR, Chen HZ, Shen AG, Wang GR, Groopman JD, Kensler TW. Liver cancer mortality over six decades in an epidemic area: what we have learned. PeerJ. 2021 Feb 3;9:e10600. doi: 10.7717/peerj.10600. PMID: 33604165; PMCID: PMC7866902.
  4. Linn YL, Chee MY, Koh YX, Teo JY, Cheow PC, Chow PKH, Chan CY, Chung AYF, Ooi LLPJ, Goh BKP. Actual 10-year survivors and 10-year recurrence free survivors after primary liver resection for hepatocellular carcinoma in the 21st century: A single institution contemporary experience. J Surg Oncol. 2021 Jan;123(1):214-221. doi: 10.1002/jso.26259. Epub 2020 Oct 23. PMID: 33095920.
  5. Villard C, Soler L, Gangi A. Radiofrequency ablation of hepatic tumors: simulation, planning, and contribution of virtual reality and haptics. Comput Methods Biomech Biomed Engin. 2005 Aug;8(4):215-27. doi: 10.1080/10255840500289988. PMID: 16298844.
  6. Facciorusso A, Di Maso M, Muscatiello N. Microwave ablation versus radiofrequency ablation for the treatment of hepatocellular carcinoma: A systematic review and meta-analysis. Int J Hyperthermia. 2016 May;32(3):339-44. doi: 10.3109/02656736.2015.1127434. Epub 2016 Jan 21. PMID: 26794414.
  7. Afaghi P, Lapolla MA, Ghandi K. Percutaneous microwave ablation applications for liver tumors: recommendations for COVID-19 patients. Heliyon. 2021 Mar 6;7(3):e06454. doi: 10.1016/j.heliyon.2021.e06454. PMID: 33748501; PMCID: PMC7966996.
  8. Gartshore A, Kidd M, Joshi LT. Applications of Microwave Energy in Medicine. Biosensors (Basel). 2021 Mar 26;11(4):96. doi: 10.3390/bios11040096. PMID: 33810335; PMCID: PMC8065940.
  9. Itoh S, Ikeda Y, Kawanaka H, Okuyama T, Kawasaki K, Eguchi D, Korenaga D, Takenaka K. Efficacy of surgical microwave therapy in patients with unresectable hepatocellular carcinoma. Ann Surg Oncol. 2011 Dec;18(13):3650-6. doi: 10.1245/s10434-011-1831-z. Epub 2011 Jun 15. PMID: 21674268.
  10. Tehrani MHH, Soltani M, Kashkooli FM, Raahemifar K. Use of microwave ablation for thermal treatment of solid tumors with different shapes and sizes-A computational approach. PLoS One. 2020 Jun 15;15(6):e0233219. doi: 10.1371/journal.pone.0233219. PMID: 32542034; PMCID: PMC7295236.
  11. Karampatzakis A, Kühn S, Tsanidis G, Neufeld E, Samaras T, Kuster N. Antenna design and tissue parameters considerations for an improved modelling of microwave ablation in the liver. Phys Med Biol. 2013 May 21;58(10):3191-206. doi: 10.1088/0031-9155/58/10/3191. Epub 2013 Apr 19. PMID: 23603829.
  12. Ge M, Jiang H, Huang X, Zhou Y, Zhi D, Zhao G, Chen Y, Wang L, Qiu B. A multi-slot coaxial microwave antenna for liver tumor ablation. Phys Med Biol. 2018 Sep 6;63(17):175011. doi: 10.1088/1361-6560/aad9c5. PMID: 30102247.
  13. Racila M, Crolet JM. Numerical simulation of thermoablation in living tissues. Computer Methods in Biomechanics and Biomedical Engineering 2011; 14(sup1): 279-80.
  14. Chiang J, Wang P, Brace CL. Computational modelling of microwave tumour ablations. Int J Hyperthermia. 2013 Jun;29(4):308-17. doi: 10.3109/02656736.2013.799295. PMID: 23738698; PMCID: PMC3768158.
  15. Radjenović B, Sabo M, Šoltes L, Prnova M, Čičak P, Radmilović-Radjenović M. On Efficacy of Microwave Ablation in the Thermal Treatment of an Early-Stage Hepatocellular Carcinoma. Cancers (Basel). 2021 Nov 18;13(22):5784. doi: 10.3390/cancers13225784. PMID: 34830937; PMCID: PMC8616542.
  16. Heat Transfer Module 1986-2020. Burlington (MA): COMSOL, Inc.
  17. 3D-IRCADb. Available online:
  18. Radmilović-Radjenović M, Bošković N, Sabo M, Radjenović B. An Analysis of Microwave Ablation Parameters for Treatment of Liver Tumors from the 3D-IRCADb-01 Database. Biomedicines. 2022 Jul 1;10(7):1569. doi: 10.3390/biomedicines10071569. PMID: 35884874; PMCID: PMC9312906.
  19.  Bošković N, Radmilović-Radjenović M, Radjenović B. Finite Element Analysis of Microwave Tumor Ablation Based on Open-Source Software Components. Mathematics. 2023;11:2654.

Download Article
Received March 9, 2024.
Accepted April 17, 2024.
©2024 International Medical Research and Development Corporation.