Polymorphisms of Genes Involved in Endothelial Dysfunction in the Yakuts with COPD and Metabolic Syndrome

Ekaterina P. Borisova, Elena S. Kylbanova, Alexandra S. Asekritova, Nadezhda R. Maksimova, Varvara N. Neustroeva, Ulyana S. Portnyagina, Ara A. Donskaya

International Journal of Biomedicine. 2018;8(2):134-138.   
DOI: 10.21103/Article8(2)_OA5
Originally published June 15, 2018  


The aim of our research was to study the association of the -675 4G/5G (rs1799889) SNP of the SERPINE1 (PAI-1) gene and the Arg353Gln G>A (rs6046) SNP of the F7 gene with metabolic syndrome (MetS) in the Yakuts with COPD.
Methods and Results: A molecular-genetic examination was conducted in 200 COPD patients of Yakut ethnicity. The main group (MG) consisted of 100 COPD patients with MetS, the comparison group (CG) included 100 COPD patients without MetS. The distribution of genotypes of studied SNPs was in Hardy-Weinberg equilibrium in all cases. Studying the SERPINE1 -675 4G/5G SNP, we found the prevalence of a 4G allele in MG, compared to CG (OR=1.84, 95% CI 1.23–2.74; χ2=9.06, P=0.003). Incidence of the homozygous 4G/4G mutation was rather high in MG, compared to CG (OR=2.35, 95%CI 1.24–4.44; χ2=9.31, P=0.002). According to our data, the presence of MetS in Yakut patients with COPD has been associated with the carrier of the 4G/4G genotype. Studying the F7 Arg353Gln SNP, we found the prevalence of an Arg253 allele in both groups (0.72 in MG and 0.71 in CG; χ2=0.01, P=0.91). The homozygous Gln353/Gln353 mutant genotype was rare in both groups (0.12 in MG and 0.10 in CG; OR=1.23, 95%CI 0.50–2.99; χ2=0.01, P=0.92). In our study, the F7 Arg353Gln SNP was not associated with protection against MetS in COPD patients.

SERPINE1 gene • F7 gene • metabolic syndrome • chronic obstructive pulmonary disease
  1. World Health Organization. Global surveillance, prevention and control of chronic respiratory diseases. Geneva, Switzerland: World Health Organization; 2007.
  2. Murray CJ, Lopez AD. Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. Lancet. 1997;349(9064):1498–504. PubMed
  3. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V,et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2095–128. doi: 10.1016/S0140-6736(12)61728-0. PubMed
  4. Global Initiative for Chronic Obstructive Lung Disease (GOLD, 2017 REPORT). Available from: http://goldcopd.org/
  5. Agusti A, Soriano JB. COPD as a systemic disease. COPD. 2008;5(2):133–38. doi: 10.1080/15412550801941349. Google Scholar
  6. Barnes PJ, Celli BR. Systemic manifestations and comorbidities of COPD. Eur Respir J. 2009;33(5):1165–85. Eur Respir J. 2009;33(5):1165–1185. PubMed
  7. Fabbri LM, Rabe KF. From COPD to chronic systemic inflammatory syndrome? Lancet. 2007;370(9589):797–9. PubMed
  8. Shpagina LA, Gerasimenko ON, Shpagin IS, Zueva MA. [Endothelial dysfunction and vascular remodeling with arterial hypertension in combination with chronic obstructive pulmonary disease: new therapeutic targets]. Pulmonology. 2009;3:47-54. [Article in Russian].
  9. Agusti A, Soriano JB. COPD as a systemic disease. COPD. 2008;5(2):133–8. doi: 10.1080/15412550801941349. PubMed
  10. Minas M, Kostikas K, Papaioannou AI, Mystridou P, Karetsi E, Georgoulias P, et al. The association of metabolic syndrome with adipose tissue hormones and insulin resistance in patients with COPD without co-morbidities. COPD. 2011;8(6):414–20. doi:10.3109/15412555.2011.619600. PubMed
  11. Watz H, Waschki B, Kirsten A, Müller KC, Kretchmar G, Meyer T, et al. The metabolic syndrome in patients with chronic bronchitis and COPD: frequency and associated consequences for systemic inflammation and physical inactivity. Chest. 2009;136(4):1039–1046. doi: 10.1378/chest.09-0393. PubMed
  12. Wells CE, Baker EH. Metabolic syndrome and diabetes mellitus in COPD. Rabe KF, Wedzicha JA, Wouters EFM (eds). COPD and Comorbidity. European Respiratory Society, Sheffield. 2013:117–134. Google Scholar
  13. Vujic T, Nagorni O, Maric G, Popovic L, Jankovic J. Metabolic syndrome in patients with chronic obstructive pulmonary disease: frequency and relationship with systemic inflammation. Hippokratia. 2016;20(2):110-114. PubMed
  14. Franssen FME, O’Donnell DE, Goossens GH, Blaak EE, Schols AM. Obesity and the lung: 5. Obesity and COPD. Thorax. 2008;63(12):1110-7. doi: 10.1136/thx.2007.086827. PubMed
  15. Palomo I, Moore-Carrasco R, Alarcon M, Rojas A, Espana F, Andres V, Gonzalez-Navarro H. Pathophysiology of the proatherothrombotic state in the metabolic syndrome. Front Biosc (Schol Ed). 2010;2:194-208. PubMed
  16. Mamedov MN, Oganov RG. [Epidemiological aspects of the metabolic syndrome]. Kardiologiia. 2004; 44(9):4-8. [Article in Russian]. PubMed
  17. Loskutoff DJ, Curriden SA. The fibrinolytic system of the vessel wall and its role in the control of thrombosis. Ann NY Acad Sci. 1990;598:238–47. PubMed
  18. Huang J, Sabater-Lleal M, Asselbergs FW, Tregouet D, Shin SY, Ding J, et al. Genome-wide association study for circulating levels of PAI-1 provides novel insights into its regulation. Blood. 2012;120(24):4873–81. doi: 10.1182/blood-2012-06-436188. PubMed
  19. Kohler HP, Grant PJ. Plasminogen-activator inhibitor type 1 and coronary artery disease. N Engl J Med. 2000:342(24):1792-801. PubMed
  20. Incalcaterra E, Meli F, Muratori I, Corrado E, Amato C, Canino B, Ferrara F. Residual vein thrombosis and onset of post-thrombotic syndrome: Influence of the 4G/5G polymorphism of plasminogen activator inhibitor-1 gene. Thromb Res. 2014;133(3):371–4. doi: 10.1016/j.thromres.2013.12.032. PubMed
  21. Hellwege JN, Palmer ND, Ziegler JT, Langefeld CD, Lorenzo C, Norris JM, et al. Genetic variants in selenoprotein P plasma 1 gene (SEPP1) are associated with fasting insulin and first phase insulin response in Hispanics. Gene. 2014;534(1):33-9. doi: 10.1016/j.gene.2013.10.035. PubMed
  22. Rao LV, Rapaport SI. Activation of factor VII bound to tissue factor: a key early step in the tissue factor pathway of blood coagulation. Proc Natl Acad Sci U S A. 1988;85(18):6687–91. PubMed
  23. Humphries SE, Lane A, Green FR, Cooper J, Miller GJ. Factor VII coagulant activity and antigen levels in healthy men are determined by interaction between factor VII genotype and plasma triglyceride concentration. Arterioscler Thromb. 1994;14(2):193–8. PubMed
  24.  Feng D, Tofler GH, Larson MG, O’Donnell CJ, Lipinska I, Schmitz C, et al. Factor VII gene polymorphism, factor VII levels, and prevalent cardiovascular disease: the Framingham Heart Study. Arterioscler Thromb Vasc Biol. 2000;20(2):593–600. PubMed
  25. Mariani G, Bernardi F, Bertina R, Vicente VV, Prydz H, Samama M, et al. Serum phospholipids are the main environmental determinants of activated factor VII in the most common FVII genotype. European Union Concerted Action “Clotart”. Haematologica. 1999;84(7):620–6. PubMed
  26. de Lange M, Snieder H, Ariens RA, Spector TD, Grant PJ. The genetics of haemostasis: a twin study. Lancet. 2001;357(9250):101–5. PubMed
  27. Lam KS, Ma OC, Bourke C, Chan LC, Janus ED. Genetic influence of the R/Q353 genotype on factor VII activity is overwhelmed by environmental factors in Chinese patients with Type II (non-insulin-dependent) diabetes mellitus. Diabetologia. 1998;41(7):760–6. PubMed
  28. Iacoviello L, Di Castelnuovo A, De Knijff P, D'Orazio A, Amore C, Arboretti R, et al. Polymorphisms in the coagulation factor VII gene and the risk of myocardial infarction. N Engl J Med. 1998;338(2):79-85. PubMed
  29.  Ghaddar HM, Folsom AR, Aleksic N, Hearne LB, Chambless LE, Morrissey JH, Wu KK. Correlation of factor VIIa values with factor VII gene polymorphism, fasting and postprandial triglyceride levels, and subclinical carotid atherosclerosis. Circulation. 1998; 98(25):2815-21. PubMed
  30. Hunault M, Arbini AA, Lopaciuk S, Carew JA, Bauer KA. The Arg353Gln polymorphism reduces the level of coagulation factor VII. In vivo and in vitro studies. Arterioscler Thromb Vasc Biol. 1997;17(11):2825-9. PubMed
  31. IDF Consensus Worldwide Definition of the Metabolic Syndrome, 2006. Available from: https://www.idf.org/e-library/consensus-statements/60-idfconsensus-world...
  32. Khavinson VKh, Strekalov DL, Lyshchev AA. [Analysis of the association of some genetic risk factors for coronary artery disease with indices of lipid metabolism and arterial pressure]. Kliniko-laboratornii konsilium. 2010;4: 52-53. [Article in Russian].
  33. Berberoğlu M, Evliyaoğlu O, Adiyaman P, Ocal G, Ulukol B, Simşek F, et al. Plasminogen activator inhibitor-1 (PAI-1) gene polymorphism (-675 4G/5G) associated with obesity and vascular risk in children. J Pediatr Endocrinol Metab. 2006;19(5)741-8. PubMed
  34. Sartori MT, Vettor R, De Pergola G, De Mitrio V, Saggiorato G, Della Mea P, et al. Role of the 4G/5G polymorphism of PaI-1 gene promoter on PaI-1 levels in obese patients: influence of fat distribution and insulin-resistance. Thromb Haemost. 2001;86(5):1161-9. PubMed
  35. Al-Hamodi ZH, Saif-Ali R, Ismail IS, Ahmed KA, Muniandy S. Plasminogen activator inhibitor-1 4G/5G polymorphism is associated with metabolic syndrome parameters in Malaysian subjects. J Clin Biochem Nutr.  2012;50(3):184-9. doi: 10.3164/jcbn.11-48. PubMed
  36. Reiner AP, Carlson CS, Rieder MJ, Siscovick DS, Liu K, Chandler WL, et al. Coagulation factor VII gene haplotypes, obesity-related traits, and cardiovascular risk in young women. J Thromb Haemost. 2007;5(1):42-9. PubMed
  37. Pankow JS, Folsom AR, Shahar E, Tsai MY, Jeffery RW, Wing RR. Weight-loss induced changes in plasma factor VII coagulant activity and relation to the factor VII Arg/Gln353 polymorphism in moderately obese adults. Thromb Haemost. 1998;79(4):784-9. PubMed

Download Article
Received May 9, 2018.
Accepted May 24, 2018.
©2018 International Medical Research and Development Corporation.