Association of AGT (T704C) and NOS3 (G894T) Gene Polymorphisms with Treatment-Resistant Hypertension in the Uzbek Population

Sh. M. Masharipov, G. J. Abdullaeva, G. A. Khamidullaeva, D. V. Zakirova, A. A. Abdullaev

 
International Journal of Biomedicine. 2023;13(2):210-216.
DOI: 10.21103/Article13(2)_OA1
Originally published June 5, 2023

Abstract: 

The aim of our study was to assess the effect of polymorphic markers of the AGT T704C (M235T) rs699 and NOS3 G894T (Glu298Asp) rs1799983 SNPs on the risk of the development of treatment-resistant hypertension (TRH).
Methods and Results: The study included 178 patients (mean age of 56.67±11.12 years) with AH Grades 1-3 (ESC/ESH, 2018), who were on outpatient treatment at the Republican Specialized Scientific and Practical Medical Center for Cardiology. Genomic DNA samples were isolated from the peripheral blood leukocytes by using the DiatomТМ DNA Prep 200 Kit (Isogen Laboratory LLC, Moscow, Russia) according to manufacturer`s protocol. A multiplex RT-PCR assay was used to detect the AGT T704C (M235T) rs699 SNP and NOS3 G894T (Glu298Asp) rs1799983 SNP.
We studied the distribution of the AGT T704C (M235T) rs699 polymorphism in 61 Uzbek patients with TRH (cases) and 117 Uzbek patients with non-TRH (controls) (Group 1) and the distribution of the NOS3 G894T (Glu298Asp) rs1799983 polymorphism in 61 Uzbek patients with TRH (cases) and 115 Uzbek patients with non-TRH (controls) (Group 2).
Our results indicate a significantly greater accumulation of the C allele and CC genotype of the AGT T704C (M235T) rs699 SNP among TRH patients than among patients with non-TRH. We found a significant association between the AGT T704C (M235T) rs699 SNP and the risk of TRH under the multiplicative genetic model  (C vs. T :  OR=1.85, 95% CI: 1.17-2.92, P=0.006), additive model (CC  vs.TT vs. TC; OR=3.00, 95% CI: 1.56-5.75, P=0.009), and recessive model (CC vs. TC+TT; OR=3.00, 95% CI: 1.56-5.75, P=0.0008). For the NOS3 G894T (Glu298Asp) rs1799983 SNP, the multiplicative model showed a significant risk of TRH with the carriage of the T allele (OR=1.99, 95% CI: 1.20-3.28, P=0.007), and the additive model showed a significant risk of TRH with the carriage of the heterozygous GT genotype (OR=2.25, 95% CI: 1.17-4.33, P=0.01). At the same time, the carriage of the G allele (OR=0.5, 95% CI: 0.30-0.83, P=0.007) and GG genotype (OR=0.40, 95% CI: 0.21-0.76, P=0.01) may be protective against the development of TRH.
Conclusion: Further genetic studies of TRH may help achieve better individual outcomes by optimizing drug therapy based on genetic variation.

Keywords: 
treatment-resistant hypertension • angiotensinogen • nitric oxide synthase
References: 
  1. Carey RM, Calhoun DA, Bakris GL, Brook RD, Daugherty SL, Dennison-Himmelfarb CR, et al.; American Heart Association Professional/Public Education and Publications Committee of the Council on Hypertension; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology; Council on Genomic and Precision Medicine; Council on Peripheral Vascular Disease; Council on Quality of Care and Outcomes Research; and Stroke Council. Resistant Hypertension: Detection, Evaluation, and Management: A Scientific Statement From the American Heart Association. Hypertension. 2018 Nov;72(5):e53-e90. doi: 10.1161/HYP.0000000000000084.
  2. Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RD, White A, Cushman WC, White W, Sica D, Ferdinand K, Giles TD, Falkner B, Carey RM. Resistant hypertension: diagnosis, evaluation, and treatment. A scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension. 2008 Jun;51(6):1403-19. doi: 10.1161/HYPERTENSIONAHA.108.189141.
  3. Carey RM, Sakhuja S, Calhoun DA, Whelton PK, Muntner P. Prevalence of Apparent Treatment-Resistant Hypertension in the United States. Hypertension. 2019 Feb;73(2):424-431. doi: 10.1161/HYPERTENSIONAHA.118.12191.
  4. Gupta AK, Nasothimiou EG, Chang CL, Sever PS, Dahlöf B, Poulter NR; ASCOT investigators. Baseline predictors of resistant hypertension in the Anglo-Scandinavian Cardiac Outcome Trial (ASCOT): a risk score to identify those at high-risk. J Hypertens. 2011 Oct;29(10):2004-13. doi: 10.1097/HJH.0b013e32834a8a42.
  5. Daugherty SL, Powers JD, Magid DJ, Masoudi FA, Margolis KL, O'Connor PJ, et al. The association between medication adherence and treatment intensification with blood pressure control in resistant hypertension. Hypertension. 2012 Aug;60(2):303-9. doi: 10.1161/HYPERTENSIONAHA.112.192096.
  6. Shimbo D, Levitan EB, Booth JN 3rd, Calhoun DA, Judd SE, Lackland DT, et al. The contributions of unhealthy lifestyle factors to apparent resistant hypertension: findings from the Reasons for Geographic And Racial Differences in Stroke (REGARDS) study. J Hypertens. 2013 Feb;31(2):370-6. doi: 10.1097/HJH.0b013e32835b6be7.
  7. De Nicola L, Gabbai FB, Agarwal R, Chiodini P, Borrelli S, Bellizzi V, et al. Prevalence and prognostic role of resistant hypertension in chronic kidney disease patients. J Am Coll Cardiol. 2013 Jun 18;61(24):2461-2467. doi: 10.1016/j.jacc.2012.12.061. 
  8. El Rouby N, Cooper-DeHoff RM. Genetics of resistant hypertension: a novel pharmacogenomics phenotype. Curr Hypertens Rep. 2015 Sep;17(9):583. doi: 10.1007/s11906-015-0583-8. 
  9. Franceschini N, Reiner AP, Heiss G. Recent findings in the genetics of blood pressure and hypertension traits. Am J Hypertens. 2011 Apr;24(4):392-400. doi: 10.1038/ajh.2010.218.
  10. Evangelou E, Warren HR, Mosen-Ansorena D, Mifsud B, Pazoki R, Gao H, et al.; Million Veteran Program. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat Genet. 2018 Oct;50(10):1412-1425. doi: 10.1038/s41588-018-0205-x. Epub 2018 Sep 17. Erratum in: Nat Genet. 2018 Dec;50(12):1755. 
  11. Giri A, Hellwege JN, Keaton JM, Park J, Qiu C, Warren HR, et al.; Understanding Society Scientific Group; International Consortium for Blood Pressure; Blood Pressure-International Consortium of Exome Chip Studies; Laakso M, Zeggini E, Sever P, Scott RA, Langenberg C, Wareham NJ, et al.; Million Veteran Program; O'Donnell CJ, Hung AM, Edwards TL. Trans-ethnic association study of blood pressure determinants in over 750,000 individuals. Nat Genet. 2019 Jan;51(1):51-62. doi: 10.1038/s41588-018-0303-9. 
  12. Surendran P, Feofanova EV, Lahrouchi N, Ntalla I, Karthikeyan S, Cook J, et al.; Understanding Society Scientific Group; van der Harst P, van der Meer P, Ramachandran VS, Verweij N, Virtamo J, Völker U, et al. Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals. Nat Genet. 2020 Dec;52(12):1314-1332. doi: 10.1038/s41588-020-00713-x. Epub 2020 Nov 23. Erratum in: Nat Genet. 2021 May;53(5):762. 
  13. Cruz-Gonzalez I, Corral E, Sanchez-Ledesma M, Sanchez-Rodriguez A, Martin-Luengo C, Gonzalez-Sarmiento R. An association between resistant hypertension and the null GSTM1 genotype. J Hum Hypertens. 2009 Aug;23(8):556-8. doi: 10.1038/jhh.2009.19. 
  14. Cruz-González I, Corral E, Sánchez-Ledesma M, Sánchez-Rodríguez A, Martín-Luengo C, González-Sarmiento R. Association between -T786C NOS3 polymorphism and resistant hypertension: a prospective cohort study. BMC Cardiovasc Disord. 2009 Aug 4;9:35. doi: 10.1186/1471-2261-9-35. 
  15. Fontana V, de Faria AP, Barbaro NR, Sabbatini AR, Modolo R, Lacchini R, Moreno H. Modulation of aldosterone levels by -344 C/T CYP11B2 polymorphism and spironolactone use in resistant hypertension. J Am Soc Hypertens. 2014 Mar;8(3):146-51. doi: 10.1016/j.jash.2013.12.001. 
  16. Fontana V, McDonough CW, Gong Y, El Rouby NM, Sá AC, Taylor KD, et al. Large-scale gene-centric analysis identifies polymorphisms for resistant hypertension. J Am Heart Assoc. 2014 Nov 10;3(6):e001398. doi: 10.1161/JAHA.114.001398. 
  17. Dumitrescu L, Ritchie MD, Denny JC, El Rouby NM, McDonough CW, Bradford Y, et al. Genome-wide study of resistant hypertension identified from electronic health records. PLoS One. 2017 Feb 21;12(2):e0171745. doi: 10.1371/journal.pone.0171745. 
  18. Gong Y, McDonough CW, Beitelshees AL, El Rouby N, Hiltunen TP, O'Connell JR, et al.  PTPRD gene associated with blood pressure response to atenolol and resistant hypertension. J Hypertens. 2015 Nov;33(11):2278-85. doi: 10.1097/HJH.0000000000000714. 
  19. El Rouby N, McDonough CW, Gong Y, McClure LA, Mitchell BD, Horenstein RB, et al. Genome-wide association analysis of common genetic variants of resistant hypertension. Pharmacogenomics J. 2019 Jun;19(3):295-304. doi: 10.1038/s41397-018-0049-x. 
  20. Lynch AI, Irvin MR, Davis BR, Ford CE, Eckfeldt JH, Arnett DK. Genetic and Adverse Health Outcome Associations with Treatment Resistant Hypertension in GenHAT. Int J Hypertens. 2013;2013:578578. doi: 10.1155/2013/578578.
  21. Jeunemaitre X, Soubrier F, Kotelevtsev YV, Lifton RP, Williams CS, Charru A, Hunt SC, Hopkins PN, Williams RR, Lalouel JM, et al. Molecular basis of human hypertension: role of angiotensinogen. Cell. 1992 Oct 2;71(1):169-80. doi: 10.1016/0092-8674(92)90275-h.
  22. Caulfield M, Lavender P, Newell-Price J, Farrall M, Kamdar S, Daniel H, Lawson M, De Freitas P, Fogarty P, Clark AJ. Linkage of the angiotensinogen gene locus to human essential hypertension in African Caribbeans. J Clin Invest. 1995 Aug;96(2):687-92. doi: 10.1172/JCI118111. 
  23. Paillard F, Chansel D, Brand E, Benetos A, Thomas F, Czekalski S, Ardaillou R, Soubrier F. Genotype-phenotype relationships for the renin-angiotensin-aldosterone system in a normal population. Hypertension. 1999 Sep;34(3):423-9. doi: 10.1161/01.hyp.34.3.423. 
  24. Staessen JA, Kuznetsova T, Wang JG, Emelianov D, Vlietinck R, Fagard R. M235T angiotensinogen gene polymorphism and cardiovascular renal risk. J Hypertens. 1999 Jan;17(1):9-17. doi: 10.1097/00004872-199917010-00003.
  25. Hingorani AD, Liang CF, Fatibene J, Lyon A, Monteith S, Parsons A, Haydock S, Hopper RV, Stephens NG, O'Shaughnessy KM, Brown MJ. A common variant of the endothelial nitric oxide synthase (Glu298-->Asp) is a major risk factor for coronary artery disease in the UK. Circulation. 1999 Oct 5;100(14):1515-20. doi: 10.1161/01.cir.100.14.1515.
  26. Ong SL, Whitworth JA. How do glucocorticoids cause hypertension: role of nitric oxide deficiency, oxidative stress, and eicosanoids. Endocrinol Metab Clin North Am. 2011 Jun;40(2):393-407, ix. doi: 10.1016/j.ecl.2011.01.010. 
  27. Atay AE, Akbas H, Tumer C, Sakar MN, Esen B, Incebiyik A, Simsek S, Sit D. The association of endothelial nitric oxide synthase gene G894T polymorphism and serum nitric oxide concentration with microalbuminuria in patients with gestational diabetes. Clin Nephrol. 2014 Feb;81(2):105-11. doi: 10.5414/cn108138. 
  28. Sakar MN, Atay AE, Demir S, Bakir VL, Demir B, Balsak D, Akay E, Ulusoy AI, Verit FF. Association of endothelial nitric oxide synthase gene G894T polymorphism and serum nitric oxide levels in patients with preeclampsia and gestational hypertension. J Matern Fetal Neonatal Med. 2015 Nov;28(16):1907-11. doi: 10.3109/14767058.2014.971748. 
  29. Veldman BA, Spiering W, Doevendans PA, Vervoort G, Kroon AA, de Leeuw PW, Smits P. The Glu298Asp polymorphism of the NOS 3 gene as a determinant of the baseline production of nitric oxide. J Hypertens. 2002 Oct;20(10):2023-7. doi: 10.1097/00004872-200210000-00022.
  30. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al.; ESC Scientific Document Group. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018 Sep 1;39(33):3021-3104. doi: 10.1093/eurheartj/ehy339. Erratum in: Eur Heart J. 2019 Feb 1;40(5):475.
  31. Marino F, Scalise M, Cianflone E, Salerno L, Cappetta D, Salerno N, De Angelis A, Torella D, Urbanek K. Physical Exercise and Cardiac Repair: The Potential Role of Nitric Oxide in Boosting Stem Cell Regenerative Biology. Antioxidants (Basel). 2021 Jun 23;10(7):1002. doi: 10.3390/antiox10071002.
  32. Takahashi Y, Yamazaki K, Kamatani Y, Kubo M, Matsuda K, Asai S. A genome-wide association study identifies a novel candidate locus at the DLGAP1 gene with susceptibility to resistant hypertension in the Japanese population. Sci Rep. 2021 Sep 30;11(1):19497. doi: 10.1038/s41598-021-98144-z. 
  33. Yugar-Toledo JC, Martin JF, Krieger JE, Pereira AC, Demacq C, Coelho OR, Pimenta E, Calhoun DA, Júnior HM. Gene variation in resistant hypertension: multilocus analysis of the angiotensin 1-converting enzyme, angiotensinogen, and endothelial nitric oxide synthase genes. DNA Cell Biol. 2011 Aug;30(8):555-64. doi: 10.1089/dna.2010.1156.
  34. Rafikov R, Fonseca FV, Kumar S, Pardo D, Darragh C, Elms S, Fulton D, Black SM. eNOS activation and NO function: structural motifs responsible for the posttranslational control of endothelial nitric oxide synthase activity. J Endocrinol. 2011 Sep;210(3):271-84. doi: 10.1530/JOE-11-0083. 
  35. Qian J, Fulton D. Post-translational regulation of endothelial nitric oxide synthase in vascular endothelium. Front Physiol. 2013 Dec 13;4:347. doi: 10.3389/fphys.2013.00347.
  36. Shi J, Liu S, Guo Y, Liu S, Xu J, Pan L, Hu Y, Liu Y, Cheng Y. Association between eNOS rs1799983 polymorphism and hypertension: a meta-analysis involving 14,185 cases and 13,407 controls. BMC Cardiovasc Disord. 2021 Aug 9;21(1):385. doi: 10.1186/s12872-021-02192-2.
  37. Jáchymová M, Horký K, Bultas J, Kozich V, Jindra A, Peleska J, Martásek P. Association of the Glu298Asp polymorphism in the endothelial nitric oxide synthase gene with essential hypertension resistant to conventional therapy. Biochem Biophys Res Commun. 2001 Jun 8;284(2):426-30. doi: 10.1006/bbrc.2001.5007. 

Download Article
Received March 6, 2023.
Accepted April 23, 2023.
©2023 International Medical Research and Development Corporation.