The 4q25/PITX2 SNP rs6817105 and Atrial Fibrillation in Uzbek Patients with Arterial Hypertension

G. M. Radzhabova, G. Zh. Abdullaeva, D. V. Zakirova, M. T. Pulatova, N. Kh. Sherbadalova, M. N. Khatamova, Z. T. Mashkurova, N. N. Ibrokhimov, A. A. Abdullaev, M. A. Sadulloeva

International Journal of Biomedicine. 2023;13(3):72-78.
DOI: 10.21103/Article13(3)_OA3
Originally published September 5, 2023


Background: Atrial fibrillation (AF) is one of the most common cardiac arrhythmias and a major predictor of morbidity and mortality. In recent years, genome-wide association studies (GWAS) have identified common genetic variants associated with a higher risk of AF. The aim of our research was to study the possible association of the 4q25/PITX2 SNP rs6817105 with the risk of developing AF in patients with arterial hypertension (AH) in the Uzbek population.
Methods and Results: The study included 142 AH (Grades 1-3; ESC/ESH, 2018) patients of Uzbek nationality who were initially diagnosed with paroxysmal form (15[10.6%]), persistent form (43[30.3%]), and permanent form of AF (84[59.1%]). The mean age of these patients was 64.8±10.9 years. AF was verified using ECG Holter monitoring. The control group (n=88) consisted of AH patients without AF with a mean age of 56.5±12.3 years. Echocardiography was carried out according to the recommendations of the American Society of Echocardiography in M- and B-modes. We genotyped SNP rs6817105 (T>C) and examined the relationships among rs6817105 genotype, clinical characteristics, and echocardiographic parameters in AH patients with AF and non-AF AH patients (controls).
The rs6817105 minor C allele frequency was significantly higher in AH patients with AF than in non-AF AH patients (71.8% vs. 59.7%, P=0.007). Analysis of the multiplicative model for the rs6817105 SNP showed a significant risk of AF in the carriage of the C allele (OR=1.72, 95% CI: 1.16-2.56, P=0.007). The dominant and additive models for the rs6817105 SNP showed a significant risk of AF with the carriage of the CC+CT genotypes (OR=3.16, 95% CI: 1.37-7.27, P=0.005) and the homozygous CC genotype (OR=1.63, 95% CI: 0.95-2.81, P=0.008), respectively. The allelic distribution showed that the carriage of the C allele was dominant in permanent and persistent AF (110/68.75% vs. 50/31.25% for the T allele [(χ2=22.50, P=0.000], and 64/74.42% vs. 22/25.58% for the T allele [χ2=20.512, P=0.000], respectively). Among AH patients with paroxysmal AF, the C allele prevailed to the greatest extent: 20(90.9%) vs. 2(9.1%) for the T allele (χ2=14.727, P=0.000), indicating a significant accumulation of the C allele and CC genotype among patients with paroxysmal AF. In general, in AH patients with AF, carriers of the CC genotype, the left atrial volume index (LAVI) was significantly higher than the carriers of the CT and TT genotypes: 46.8±13.9 ml/m2 vs. 40.4±13.0 ml/m2 and 36.1±11.0 ml/m2, respectively (P=0.0083).
Conclusion: Our results indicate the rs6817105 minor C allele and CC genotype are associated with the risk of developing AF in AH patients of Uzbek nationality. The highest accumulation of the rs6817105 minor C allele and CC genotype is found in paroxysmal AF.  In carriers of the rs6817105 CC genotype, the LAVI was significantly larger than in carriers of the CT and TT genotypes.

atrial fibrillation • rs6817105 • arterial hypertension • left atrial volume index
  1. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, Clement DL, Coca A, de Simone G, Dominiczak A, Kahan T, Mahfoud F, Redon J, Ruilope L, Zanchetti A, Kerins M, Kjeldsen SE, Kreutz R, Laurent S, Lip GYH, McManus R, Narkiewicz K, Ruschitzka F, Schmieder RE, Shlyakhto E, Tsioufis C, Aboyans V, Desormais I; ESC Scientific Document Group. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018 Sep 1;39(33):3021-3104. doi: 10.1093/eurheartj/ehy339. Erratum in: Eur Heart J. 2019 Feb 1;40(5):475.
  2. Van Gelder IC, Crijns HJ, Tieleman RG, Brugemann J, De Kam PJ, Gosselink AT, et al.; Chronic atrial fibrillation. Success of serial cardioversion therapy and safety of oral anticoagulation. Arch Intern Med. 1996 December;156(22):2585-2592. doi: 10.1001/archinte.156.22.2585.
  3. Go O, Rosendorff C. Hypertension and atrial fibrillation. Curr Cardiol Rep. 2009 November;11(6):430-435. doi: 10.1007/s11886-009-0062-4.
  4. Andalib A, Brugada R, Nattel S. Atrial fibrillation: evidence for genetically determined disease. Curr Opin Cardiol. 2008 May;23(3):176-83. doi: 10.1097/HCO.0b013e3282fa7142.
  5. Gudbjartsson DF, Arnar DO, Helgadottir A, Gretarsdottir S, Holm H, Sigurdsson A, et al. Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature. 2007 Jul 19;448(7151):353-7. doi: 10.1038/nature06007.
  6. Roselli C, Rienstra M, Ellinor PT. Genetics of Atrial Fibrillation in 2020: GWAS, Genome Sequencing, Polygenic Risk, and Beyond. Circ Res. 2020 Jun 19;127(1):21-33. doi: 10.1161/CIRCRESAHA.120.316575
  7. Schulz C, Lemoine MD, Mearini G, Koivumäki J, Sani J, Schwedhelm E, et al. PITX2 Knockout Induces Key Findings of Electrical Remodeling as Seen in Persistent Atrial Fibrillation. Circ Arrhythm Electrophysiol. 2023 Mar;16(3):e011602. doi: 10.1161/CIRCEP.122.011602.
  8. Tomomori S, Nakano Y, Ochi H, Onohara Y, Sairaku A, Tokuyama T, et al. Chromosome 4q25 Variant rs6817105 Bring Sinus Node Dysfunction and Left Atrial Enlargement. Sci Rep. 2018 Oct 1;8(1):14565. doi: 10.1038/s41598-018-32453-8.
  9. Ellinor PT, Lunetta KL, Albert CM, Glazer NL, Ritchie MD, Smith AV, et al. Meta-analysis identifies six new susceptibility loci for atrial fibrillation. Nat Genet. 2012 Apr 29;44(6):670-5. doi: 10.1038/ng.2261.
  10. Christophersen IE, Rienstra M, Roselli C, Yin X, Geelhoed B, Barnard J, et al.; METASTROKE Consortium of the ISGC; Neurology Working Group of the CHARGE Consortium; Dichgans M, Ingelsson E, Kooperberg C, Melander O, Loos RJF, Laurikka J, et al.; AFGen Consortium. Large-scale analyses of common and rare variants identify 12 new loci associated with atrial fibrillation. Nat Genet. 2017 Jun;49(6):946-952. doi: 10.1038/ng.3843. Epub 2017 Apr 17. Erratum in: Nat Genet. 2017 Jul 27;49(8):1286.
  11. Aguirre LA, Alonso ME, Badía-Careaga C, Rollán I, Arias C, Fernández-Miñán A, et al.  Long-range regulatory interactions at the 4q25 atrial fibrillation risk locus involve PITX2c and ENPEP. BMC Biol. 2015 Apr 17;13:26. doi: 10.1186/s12915-015-0138-0.
  12. Shiratori H, Yashiro K, Shen MM, Hamada H. Conserved regulation and role of Pitx2 in situs-specific morphogenesis of visceral organs. Development. 2006 Aug;133(15):3015-25. doi: 10.1242/dev.02470. 
  13. Lin CR, Kioussi C, O'Connell S, Briata P, Szeto D, Liu F, et al. Pitx2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morphogenesis. Nature. 1999 Sep 16;401(6750):279-82. doi: 10.1038/45803.
  14. Franco D, Sedmera D, Lozano-Velasco E. Multiple Roles of Pitx2 in Cardiac Development and Disease. J Cardiovasc Dev Dis. 2017 Oct 11;4(4):16. doi: 10.3390/jcdd4040016.
  15. Welsh IC, Thomsen M, Gludish DW, Alfonso-Parra C, Bai Y, Martin JF, Kurpios NA. Integration of left-right Pitx2 transcription and Wnt signaling drives asymmetric gut morphogenesis via Daam2. Dev Cell. 2013 Sep 30;26(6):629-44. doi: 10.1016/j.devcel.2013.07.019. 
  16. van Ouwerkerk AF, Hall AW, Kadow ZA, Lazarevic S, Reyat JS, Tucker NR, Nadadur RD, Bosada FM, Bianchi V, Ellinor PT, Fabritz L, Martin JF, de Laat W, Kirchhof P, Moskowitz IP, Christoffels VM. Epigenetic and Transcriptional Networks Underlying Atrial Fibrillation. Circ Res. 2020 Jun 19;127(1):34-50. doi: 10.1161/CIRCRESAHA.120.316574. Epub 2020 Jun 18. Erratum in: Circ Res. 2020 Aug 28;127(6):e143-e146. 
  17. Kirchhof P, Kahr PC, Kaese S, Piccini I, Vokshi I, Scheld HH, et al. PITX2c is expressed in the adult left atrium, and reducing Pitx2c expression promotes atrial fibrillation inducibility and complex changes in gene expression. Circ Cardiovasc Genet. 2011 Apr;4(2):123-33. doi: 10.1161/CIRCGENETICS.110.958058.
  18. Syeda F, Kirchhof P, Fabritz L. PITX2-dependent gene regulation in atrial fibrillation and rhythm control. J Physiol. 2017 Jun 15;595(12):4019-4026. doi: 10.1113/JP273123. 
  19. Wang J, Klysik E, Sood S, Johnson RL, Wehrens XH, Martin JF. Pitx2 prevents susceptibility to atrial arrhythmias by inhibiting left-sided pacemaker specification. Proc Natl Acad Sci U S A. 2010 May 25;107(21):9753-8. doi: 10.1073/pnas.0912585107.
  20. Chinchilla A, Daimi H, Lozano-Velasco E, Dominguez JN, Caballero R, Delpón E, et al. PITX2 insufficiency leads to atrial electrical and structural remodeling linked to arrhythmogenesis. Circ Cardiovasc Genet. 2011 Jun;4(3):269-79. doi: 10.1161/CIRCGENETICS.110.958116. 
  21. Syeda F, Holmes AP, Yu TY, Tull S, Kuhlmann SM, Pavlovic D, et al. PITX2 Modulates Atrial Membrane Potential and the Antiarrhythmic Effects of Sodium-Channel Blockers. J Am Coll Cardiol. 2016 Oct 25;68(17):1881-1894. doi: 10.1016/j.jacc.2016.07.766. 
  22. Abdullaeva GJ, Abdullaev AA, Kevorkov AG, Abduvalieva GA, Zakirov NU, Kurbanov RD.  Interrelation between rs2200733 polymorphism of ATFB5 gene and atrial fibrillation in Uzbek patients. Turk Kardiyol Dern Ars. 2021 July; 49(5):404-409. doi: 10.5543/tkda.2021.08434.
  23. Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B, et al. ESC Scientific Document Group. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J. 2016 Oct 7;37(38):2893-2962. doi: 10.1093/eurheartj/ehw210.
  24. European Heart Rhythm Association; European Association for Cardio-Thoracic Surgery; Camm AJ, Kirchhof P, Lip GY, Schotten U, Savelieva I, Ernst A, et al. Guidelines for the management of atrial fibrillation: the Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). Eur Heart J. 2010 Oct;31(19):2369-429. doi: 10.1093/eurheartj/ehq278. Epub 2010 Aug 29. Erratum in: Eur Heart J. 2011 May;32(9):1172.
  25. Sahn DJ, Demaria A, Kisslo J, Weyman A. Recommendation regarding quantitation in M-mode echocardiography: Results of a survey of echocardiographic measurements. Circulation. 1978 December;58(6):1072-1083. doi: 10.1161/01.cir.58.6.1072.
  26. Devereux RB, Reichek N. Echocardiographyic determination of left ventricular mass in man. Anatomic validation of the method. Circulation. 1977 April; 55(4):613-618.  doi: 10.1161/01.cir.55.4.613.
  27. Shul’man VA, Nikulina SYu, Isachenko OO, Aksyutina NV, Romanenko SN, Maksimov VN, et al. Genetic aspects of atrial fibrillation. J. Arrhythmology. 2006;(46):57-60. [Article in Russian].
  28. Kääb S, Darbar D, van Noord C, Dupuis J, Pfeufer A, Newton-Cheh C, et al. Large scale replication and meta-analysis of variants on chromosome 4q25 associated with atrial fibrillation. Eur Heart J. 2009 Apr;30(7):813-9. doi: 10.1093/eurheartj/ehn578.
  29. Benjamin EJ, Rice KM, Arking DE, Pfeufer A, van Noord C, Smith AV, et al. Variants in ZFHX3 are associated with atrial fibrillation in individuals of European ancestry. Nat Genet. 2009 Aug;41(8):879-81. doi: 10.1038/ng.416
  30. Ellinor PT, Lunetta KL, Glazer NL, Pfeufer A, Alonso A, Chung MK, et al. Common variants in KCNN3 are associated with lone atrial fibrillation. Nat Genet. 2010 Mar;42(3):240-4. doi: 10.1038/ng.537. 
  31. Li C, Wang F, Yang Y, Fu F, Xu C, Shi L, et al. Significant association of SNP rs2106261 in the ZFHX3 gene with atrial fibrillation in a Chinese Han GeneID population. Hum Genet. 2011 Mar;129(3):239-46. doi: 10.1007/s00439-010-0912-6. 
  32. Chang SH, Chang SN, Hwang JJ, Chiang FT, Tseng CD, Lee JK, et al. Significant association of rs13376333 in KCNN3 on chromosome 1q21 with atrial fibrillation in a Taiwanese population. Circ J. 2012;76(1):184-8. doi: 10.1253/circj.cj-11-0525. 
  33. Lee KT, Yeh HY, Tung CP, Chu CS, Cheng KH, Tsai WC, et al. Association of RS2200733 but not RS10033464 on 4q25 with atrial fibrillation based on the recessive model in a Taiwanese population. Cardiology. 2010; 116(3): 151-156. doi: 10.1159/000318172.
  34. Ferrán A, Alegret JM, Subirana I, Aragonès G, Lluis-Ganella C, Romero-Menor C, Planas F, Joven J, Elosua R. Association between rs2200733 and rs7193343 genetic variants and atrial fibrillation in a Spanish population, and meta-analysis of previous studies. Rev Esp Cardiol (Engl Ed). 2014 Oct;67(10):822-9. doi: 10.1016/j.rec.2013.12.019.
  35.  Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008 Dec 18;456(7224):980-4. doi: 10.1038/nature07511.

Download Article
Received May 25, 2023.
Accepted August 29, 2023.
©2023 International Medical Research and Development Corporation.