For citation: AlGarni A, Alanazi N, AlMukhaylid S, Al-Qahtani S, Sabar MF, Iqbal M, Jameel A, Hussian A, Almasoudi HH, Taleb YS, Alanazi S, Alkhamis N, Almaghlouth D, Alsuwaidani A, Alsalem GB, Aldossari MJ, Alhaider DY, AlMajed M, AlMutairi N, Tuwaybah MB, Alwabari B, Alsubaie SA, Alali FH, Al-Rasasi AH, Alabdullah FA, Adeel K, Al Hafez LA, Karar T, Al Hammad R, Almohaini M, Aboalela N, Shahbaz S, Mahmood A, Basit S, AlShehab B, Aleem A, Alharbi R, Alruwaili A, Rasool M, Asif M, Zafar IF, Naeem R, Shamas MA, Saglio G, Iqbal Z. AI-Guided Repurposing of FDA-Approved Anti-Leukemic Molecularly Targeted Therapies for Fatal Blast Crisis Chronic Myeloid Leukemia: Integrative Genomics for Precision Medicine of Relapsed/Refractory Cancers in the Post-Pandemic Era. International Journal of Biomedicine. 2025;15(3):469-482. doi:10.21103/Article15(3)_OA2
Originally published September 5, 2025
Background: The COVID-19 pandemic accelerated the paradigm of drug repurposing, leading to the rapid identification of new uses for existing therapeutics under urgent clinical need. This success story has ignited a broader movement towards leveraging repurposing strategies for relapsed, refractory, and traditionally difficult-to-treat diseases, specifically cancers. Chronic myeloid leukemia (CML), although treatable in the chronic phase (CP), is usually fatal in the blast crisis phase (BC-CML), exemplifying a pressing challenge to oncology, where standard tyrosine kinase inhibitor (TKI) therapies often fail, resulting in poor survival outcomes.
Methods and Results: In a multi-institutional cohort of 141 CML patients, we performed WES across disease phases (123 CP-CML, 6 AP-CML, 12 BC-CML). Mutational landscapes were interrogated using the AI-driven PanDrugs2 platform to identify druggable targets and repurposable FDA-approved anti-leukemic therapies. A 54% surge in mutational burden was observed transitioning from AP-CML to BC-CM, revealing 67 recurrent pan-leukemic gene mutations. Notably, actionable alterations were found in NPM1, DNMT3A, PML, AKT1, CBL, JAK2, TET2, IDH1, and BCL2, with therapeutic opportunities using existing agents such as venetoclax, ivosidenib, decitabine, and azacitidine. Emerging vulnerabilities, including RPTOR and BCR mutations, suggest further avenues for mTOR and BTK inhibitor applications beyond traditional TKI paradigms.
Conclusions: Our integrated genomic and AI-guided approach demonstrates the transformative potential of drug repurposing for BC-CML, highlighting immediate actionable options where conventional therapies fail. This strategy not only offers hope for patients with BC-CML but also paves a visionary path toward precision medicine frameworks for relapsed, refractory, and otherwise intractable cancers in the post-pandemic clinical era. Prospective multi-omics studies and tailored clinical trials are urgently warranted to expand these opportunities across the oncology landscape.
- Al Khzem AH, Gomaa MS, Alturki MS, Tawfeeq N, Sarafroz M, Alonaizi SM, et al. Drug Repurposing for Cancer Treatment: A Comprehensive Review. Int J Mol Sci. 2024 Nov 19;25(22):12441. doi: 10.3390/ijms252212441.
- Galimberti S, Petrini M, Baratè C, Ricci F, Balducci S, Grassi S, et al. Tyrosine Kinase Inhibitors Play an Antiviral Action in Patients Affected by Chronic Myeloid Leukemia: A Possible Model Supporting Their Use in the Fight Against SARS-CoV-2. Front Oncol. 2020 Sep 2;10:1428. doi: 10.3389/fonc.2020.01428.
- Arbore DR, Galdean SM, Dima D, Rus I, Kegyes D, Ababei RG, et al. COVID-19 Impact on Chronic Myeloid Leukemia Patients. J Pers Med. 2022 Nov 10;12(11):1886. doi: 10.3390/jpm12111886.
- Atallah E, Deininger M. Advanced-Stage Chronic Myeloid Leukemia: Options for Difficult Treatment Situations. Drugs. 2025 Jan;85(1):41-50. doi: 10.1007/s40265-024-02108-2.
- Liu Y, Tu Y, Yan Z, Xiao J, Zhou B, Liu T, et al. CAR T-Cell therapy in chronic myeloid leukemia patients with lymphoid blast crisis: A multicenter clinical analysis. Cancer Lett. 2025 Jul 1;621:217688. doi: 10.1016/j.canlet.2025.217688.
- Gupta A, Rudrakumar K, Singh S, Nathany S, Bhargava R. Mast Cell Blast Crisis in a Patient of Chronic Myeloid Leukemia With Concurrent BCR::ABL1 and RUNX1::RUNX1T1 Rearrangement or Should We Call It Myelomastocytic Leukemia? A Diagnostic Challenge With Nomenclature Dilemma. Int J Lab Hematol. 2025 Mar 19. doi: 10.1111/ijlh.14465.
- Okabe S, Arai Y, Gotoh A. Correspondence to: "Combination therapies with ponatinib and asciminib in a preclinical model of chronic myeloid leukemia blast crisis with compound mutations", Curik N et al. Leukemia. 2024; 38: 1415-1418. Leukemia. 2025 Mar;39(3):775-778. doi: 10.1038/s41375-025-02521-w.
- Gurashi K, Wang YH, Amaral FMR, Spence K, Cant R, Yao CY, et al. An integrative multiparametric approach stratifies putative distinct phenotypes of blast phase chronic myelomonocytic leukemia. Cell Rep Med. 2025 Feb 18;6(2):101933. doi: 10.1016/j.xcrm.2025.101933.
- Atallah E, Deininger M. Advanced-Stage Chronic Myeloid Leukemia: Options for Difficult Treatment Situations. Drugs. 2025 Jan;85(1):41-50. doi: 10.1007/s40265-024-02108-2.
- Baccarani M, Castagnetti F, Gugliotta G, Rosti G. A review of the European LeukemiaNet recommendations for the management of CML. Ann Hematol. 2015 Apr;94 Suppl 2:S141-7. doi: 10.1007/s00277-015-2322-2.
- Hochhaus A, Baccarani M, Silver RT, Schiffer C, Apperley JF, Cervantes F, et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia. 2020 Apr;34(4):966-984. doi: 10.1038/s41375-020-0776-2.
- Abruzzese E, Bocchia M, Trawinska MM, Raspadori D, Bondanini F, Sicuranza A, et al. Minimal Residual Disease Detection at RNA and Leukemic Stem Cell (LSC) Levels: Comparison of RT-qPCR, d-PCR and CD26+ Stem Cell Measurements in Chronic Myeloid Leukemia (CML) Patients in Deep Molecular Response (DMR). Cancers (Basel). 2023 Aug 15;15(16):4112. doi: 10.3390/cancers15164112.
- Cortes JE, Lipton JH, Miller CB, Ailawadhi S, Akard L, Pinilla-Ibarz J, et al. Change in Chronic Low-Grade Nonhematologic Adverse Events (AEs) and Quality of Life (QoL) in Adult Patients (pts) with Philadelphia Chromosome–Positive (Ph+) Chronic Myeloid Leukemia in Chronic Phase (CML-CP) Switched From Imatinib (IM) to Nilotinib (NIL). Blood. 2012;120(21):3782.
- Gnirke A, Melnikov A, Maguire J, Rogov P, LeProust EM, Brockman W, et al. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol. 2009 Feb;27(2):182-9. doi: 10.1038/nbt.1523.
- AlAsiri S, Basit S, Wood-Trageser MA, Yatsenko SA, Jeffries EP, Surti U, et al. Exome sequencing reveals MCM8 mutation underlies ovarian failure and chromosomal instability. J Clin Invest. 2015 Jan;125(1):258-62. doi: 10.1172/JCI78473.
- Hasford J, Pfirrmann M, Hehlmann R, Allan NC, Baccarani M, Kluin-Nelemans JC, et al. A new prognostic score for survival of patients with chronic myeloid leukemia treated with interferon alfa. Writing Committee for the Collaborative CML Prognostic Factors Project Group. J Natl Cancer Inst. 1998 Jun 3;90(11):850-8. doi: 10.1093/jnci/90.11.850.
- Hasford J, Baccarani M, Hoffmann V, Guilhot J, Saussele S, Rosti G, et al. Predicting complete cytogenetic response and subsequent progression-free survival in 2060 patients with CML on imatinib treatment: the EUTOS score. Blood. 2011 Jul 21;118(3):686-92. doi: 10.1182/blood-2010-12-319038.
- U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER). Providing Regulatory Submissions in Electronic Format-Standardized Study Data Guidance for Industry. 2014.
- Jiménez-Santos MJ, Nogueira-Rodríguez A, Piñeiro-Yáñez E, López-Fernández H, García-Martín S, Gómez-Plana P, et al. PanDrugs2: prioritizing cancer therapies using integrated individual multi-omics data. Nucleic Acids Res. 2023 Jul 5;51(W1):W411-W418. doi: 10.1093/nar/gkad412.
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna; 2021.
- Sokal JE, Cox EB, Baccarani M, Tura S, Gomez GA, Robertson JE, et al. Prognostic discrimination in "good-risk" chronic granulocytic leukemia. Blood. 1984 Apr;63(4):789-99.
- Morsia E, McCullough K, Joshi M, Cook J, Alkhateeb HB, Al-Kali A, et al. Venetoclax and hypomethylating agents in acute myeloid leukemia: Mayo Clinic series on 86 patients. Am J Hematol. 2020 Dec;95(12):1511-1521. doi: 10.1002/ajh.25978.
- Yoham AL, Casadesus D. Tretinoin. 2023 Mar 27. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 32491410.
- Raedler L. Velcade (Bortezomib) Receives 2 New FDA Indications: For Retreatment of Patients with Multiple Myeloma and for First-Line Treatment of Patients with Mantle-Cell Lymphoma. Am Health Drug Benefits. 2015 Mar;8(Spec Feature):135-40.
- Javidi-Sharifi N, Brown JR. Evaluating zanubrutinib for the treatment of adults with chronic lymphocytic leukemia or small lymphocytic lymphoma. Expert Rev Hematol. 2024 Jun;17(6):201-210. doi: 10.1080/17474086.2024.2356257.
- Woods A, Norsworthy KJ, Wang X, Vallejo J, Chiu Yuen Chow E, Li RJ, et al. FDA Approval Summary: Ivosidenib in Combination with Azacitidine for Treatment of Patients with Newly Diagnosed Acute Myeloid Leukemia with an IDH1 Mutation. Clin Cancer Res. 2024 Apr 1;30(7):1226-1231. doi: 10.1158/1078-0432.CCR-23-2234.
- Straining R, Eighmy W. Tazemetostat: EZH2 Inhibitor. J Adv Pract Oncol. 2022 Mar;13(2):158-163. doi: 10.6004/jadpro.2022.13.2.7.
- Deisseroth A, Kaminskas E, Grillo J, Chen W, Saber H, Lu HL, et al. U.S. Food and Drug Administration approval: ruxolitinib for the treatment of patients with intermediate and high-risk myelofibrosis. Clin Cancer Res. 2012 Jun 15;18(12):3212-7. doi: 10.1158/1078-0432.CCR-12-0653.
- Venugopal S, Mascarenhas J. The odyssey of pacritinib in myelofibrosis. Blood Adv. 2022 Aug 23;6(16):4905-4913. doi: 10.1182/bloodadvances.2022007524.
- Jiang Y, Shen X, Zhi F, Wen Z, Gao Y, Xu J, Yang B, Bai Y. An overview of arsenic trioxide-involved combined treatment algorithms for leukemia: basic concepts and clinical implications. Cell Death Discov. 2023 Jul 27;9(1):266. doi: 10.1038/s41420-023-01558-z. PMID: 37500645; PMCID: PMC10374529.
- Alves R, Gonçalves AC, Jorge J, Alves J, Alves da Silva A, Freitas-Tavares P, et al. Everolimus in combination with Imatinib overcomes resistance in Chronic myeloid leukaemia. Med Oncol. 2019 Feb 22;36(3):30. doi: 10.1007/s12032-019-1253-5.
- Brioli A, Lomaia E, Fabisch C, Sacha T, Klamova H, Morozova E, et al. Management and outcome of patients with chronic myeloid leukemia in blast phase in the tyrosine kinase inhibitor era - analysis of the European LeukemiaNet Blast Phase Registry. Leukemia. 2024 May;38(5):1072-1080. doi: 10.1038/s41375-024-02204-y.
- Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2022 update on diagnosis, therapy, and monitoring. Am J Hematol. 2022 Sep;97(9):1236-1256. doi: 10.1002/ajh.26642.
- Rinaldi I, Winston K. Chronic Myeloid Leukemia, from Pathophysiology to Treatment-Free Remission: A Narrative Literature Review. J Blood Med. 2023 Apr 6;14:261-277. doi: 10.2147/JBM.S382090.
- Copland M. Treatment of blast phase chronic myeloid leukaemia: A rare and challenging entity. Br J Haematol. 2022 Dec;199(5):665-678. doi: 10.1111/bjh.18370.
- Strati P, Kantarjian H, Thomas D, O'Brien S, Konoplev S, Jorgensen JL, et al. HCVAD plus imatinib or dasatinib in lymphoid blastic phase chronic myeloid leukemia. Cancer. 2014 Feb 1;120(3):373-80. doi: 10.1002/cncr.28433.
- Rea D, Legros L, Raffoux E, Thomas X, Turlure P, Maury S, et al.; Intergroupe Français des Leucémies Myéloïdes Chronique; Group for Research in Adult Acute Lymphoblastic Leukemia. High-dose imatinib mesylate combined with vincristine and dexamethasone (DIV regimen) as induction therapy in patients with resistant Philadelphia-positive acute lymphoblastic leukemia and lymphoid blast crisis of chronic myeloid leukemia. Leukemia. 2006 Mar;20(3):400-3. doi: 10.1038/sj.leu.2404115.
- Liu ZM, Tseng HY, Cheng YL, Yeh BW, Wu WJ, Huang HS. TG-interacting factor transcriptionally induced by AKT/FOXO3A is a negative regulator that antagonizes arsenic trioxide-induced cancer cell apoptosis. Toxicol Appl Pharmacol. 2015 May 15;285(1):41-50. doi: 10.1016/j.taap.2015.03.007.
- Li D, Li H, Cheng C, Li G, Yuan F, Mi R, et al. All-trans retinoic acid enhanced the antileukemic efficacy of ABT-199 in acute myeloid leukemia by downregulating the expression of S100A8. Int Immunopharmacol. 2022 Nov;112:109182. doi: 10.1016/j.intimp.2022.109182.
- Kawakatsu R, Tadagaki K, Yamasaki K, Yoshida T. Venetoclax efficacy on acute myeloid leukemia is enhanced by the combination with butyrate. Sci Rep. 2024 Feb 29;14(1):4975. doi: 10.1038/s41598-024-55286-0.
- Liu J, Li S, Wang Q, Feng Y, Xing H, Yang X, et al. Sonrotoclax overcomes BCL2 G101V mutation-induced venetoclax resistance in preclinical models of hematologic malignancy. Blood. 2024 May 2;143(18):1825-1836. doi: 10.1182/blood.2023019706.
- Jabbour E, Haddad FG, Sasaki K, Carter BZ, Alvarado Y, Nasnas C, et al. Combination of dasatinib and venetoclax in newly diagnosed chronic phase chronic myeloid leukemia. Cancer. 2024 Aug 1;130(15):2652-2659. doi: 10.1002/cncr.35317.
- Ranieri R, Pianigiani G, Sciabolacci S, Perriello VM, Marra A, Cardinali V, et al. Current status and future perspectives in targeted therapy of NPM1-mutated AML. Leukemia. 2022 Oct;36(10):2351-2367. doi: 10.1038/s41375-022-01666-2.
- Li D, Zhao S, Mao L, Jin J, Wang J. Salvage treatment in IDH1 mutated acute lymphoblastic leukemia with venetoclax plus methotrexate and pegaspargase: A case report. Genes Dis. 2023 Mar 24;10(6):2215-2217. doi: 10.1016/j.gendis.2023.02.011.
- Jen EY, Wang X, Li M, Li H, Lee SL, Ni N, et al. FDA Approval Summary: Oral Azacitidine for Continued Treatment of Adults with Acute Myeloid Leukemia Unable to Complete Intensive Curative Therapy. Clin Cancer Res. 2022 Jul 15;28(14):2989-2993. doi: 10.1158/1078-0432.CCR-21-4525.
- Wang L, Song J, Xiao X, Li D, Liu T, He X. Comparison of venetoclax and ivosidenib/enasidenib for unfit newly diagnosed patients with acute myeloid leukemia and IDH1/2 mutation: a network meta-analysis. J Chemother. 2024 May;36(3):202-207. doi: 10.1080/1120009X.2023.2247200.
- Bewersdorf JP, Shimony S, Shallis RM, Liu Y, Berton G, Schaefer EJ, et al. Combination therapy with hypomethylating agents and venetoclax versus intensive induction chemotherapy in IDH1- or IDH2-mutant newly diagnosed acute myeloid leukemia-A multicenter cohort study. Am J Hematol. 2024 Aug;99(8):1640-1643. doi: 10.1002/ajh.27366.
- Scheller M, Ludwig AK, Göllner S, Rohde C, Krämer S, Stäble S, et al. Hotspot DNMT3A mutations in clonal hematopoiesis and acute myeloid leukemia sensitize cells to azacytidine via viral mimicry response. Nat Cancer. 2021 May;2(5):527-544. doi: 10.1038/s43018-021-00213-9.
- Patnaik MM, Tefferi A. Chronic myelomonocytic leukemia: 2022 update on diagnosis, risk stratification, and management. Am J Hematol. 2022 Mar 1;97(3):352-372. doi: 10.1002/ajh.26455.
- Johnson-Arbor K, Dubey R. Doxorubicin. 2023 Aug 8. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 29083582.
- Vu M, Kassouf N, Ofili R, Lund T, Bell C, Appiah S. Doxorubicin selectively induces apoptosis through the inhibition of a novel isoform of Bcl 2 in acute myeloid leukaemia MOLM 13 cells with reduced Beclin 1 expression. Int J Oncol. 2020 Jul;57(1):113-121. doi: 10.3892/ijo.2020.5052.
- Fox EJ. Mechanism of action of mitoxantrone. Neurology. 2004 Dec 28;63(12 Suppl 6):S15-8. doi: 10.1212/wnl.63.12_suppl_6.s15. PMID: 15623664.
- Bhalla K, Ibrado AM, Tourkina E, Tang C, Grant S, Bullock G, Huang Y, Ponnathpur V, Mahoney ME. High-dose mitoxantrone induces programmed cell death or apoptosis in human myeloid leukemia cells. Blood. 1993 Nov 15;82(10):3133-40.
- Awosika AO, Below J, Das JM. Vincristine. 2023 Oct 30. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 30725807
- Qu P, Zhou F, Tan LF, Wang ZJ, Wang ML, Jin RM, Han J. [Effect of Huaier Aqueous Extract Combined with Routine Chemo-therapeutic Drugs on Human Acute Lymphoblastic Leukemia Cells Nalm-6 and Sup-B15]. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2020 Oct;28(5):1451-1458. Chinese. doi: 10.19746/j.cnki.issn.1009-2137.2020.05.004.
- Roskoski R Jr. Properties of FDA-approved small molecule protein kinase inhibitors: A 2024 update. Pharmacol Res. 2024 Feb;200:107059. doi: 10.1016/j.phrs.2024.107059. Epub 2024 Jan 11. Erratum in: Pharmacol Res. 2025 May 29:107804. doi: 10.1016/j.phrs.2025.107804.
- Weisberg E, Meng C, Case AE, Sattler M, Tiv HL, Gokhale PC, et al. Comparison of effects of midostaurin, crenolanib, quizartinib, gilteritinib, sorafenib and BLU-285 on oncogenic mutants of KIT, CBL and FLT3 in haematological malignancies. Br J Haematol. 2019 Nov;187(4):488-501. doi: 10.1111/bjh.16092.
- Singer JW, Al-Fayoumi S, Ma H, Komrokji RS, Mesa R, Verstovsek S. Comprehensive kinase profile of pacritinib, a nonmyelosuppressive Janus kinase 2 inhibitor. J Exp Pharmacol. 2016 Aug 16;8:11-9. doi: 10.2147/JEP.S110702.
- Mao B, Zhang Q, Ma L, Zhao DS, Zhao P, Yan P. Overview of Research into mTOR Inhibitors. Molecules. 2022 Aug 19;27(16):5295. doi: 10.3390/molecules27165295.
- Zeng Z, Sarbassov dos D, Samudio IJ, Yee KW, Munsell MF, Ellen Jackson C, et al. Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT activation in AML. Blood. 2007 Apr 15;109(8):3509-12. doi: 10.1182/blood-2006-06-030833.
- Mitchell R, Hopcroft LEM, Baquero P, Allan EK, Hewit K, James D, et al. Targeting BCR-ABL-Independent TKI Resistance in Chronic Myeloid Leukemia by mTOR and Autophagy Inhibition. J Natl Cancer Inst. 2018 May 1;110(5):467-478. doi: 10.1093/jnci/djx236.
- Wiśniewski K, Puła B. A Review of Resistance Mechanisms to Bruton's Kinase Inhibitors in Chronic Lymphocytic Leukemia. Int J Mol Sci. 2024 May 11;25(10):5246. doi: 10.3390/ijms25105246.
- Liu H. Emerging agents and regimens for AML. J Hematol Oncol. 2021 Mar 23;14(1):49. doi: 10.1186/s13045-021-01062-w. PMID: 33757574; PMCID: PMC7989091.
- Voso MT, Larson RA, Jones D, Marcucci G, Prior T, Krauter J, et al. Midostaurin in patients with acute myeloid leukemia and FLT3-TKD mutations: a subanalysis from the RATIFY trial. Blood Adv. 2020 Oct 13;4(19):4945-4954. doi: 10.1182/bloodadvances.2020002904.
- Xiang W, Cheong JK, Ang SH, Teo B, Xu P, Asari K, et al. Pyrvinium selectively targets blast phase-chronic myeloid leukemia through inhibition of mitochondrial respiration. Oncotarget. 2015 Oct 20;6(32):33769-80. doi: 10.18632/oncotarget.5615.
- Xia Y, Sun M, Huang H, Jin WL. Drug repurposing for cancer therapy. Signal Transduct Target Ther. 2024 Apr 19;9(1):92. doi: 10.1038/s41392-024-01808-1.
- Rodrigues R, Duarte D, Vale N. Drug Repurposing in Cancer Therapy: Influence of Patient's Genetic Background in Breast Cancer Treatment. Int J Mol Sci. 2022 Apr 14;23(8):4280. doi: 10.3390/ijms23084280.
- Wang Y, Aldahdooh J, Hu Y, Yang H, Vähä-Koskela M, Tang J, Tanoli Z. DrugRepo: a novel approach to repurposing drugs based on chemical and genomic features. Sci Rep. 2022 Dec 7;12(1):21116. doi: 10.1038/s41598-022-24980-2.
- Obermayer AN, Chang D, Nobles G, Teng M, Tan AC, Wang X, et al. PATH-SURVEYOR: pathway level survival enquiry for immuno-oncology and drug repurposing. BMC Bioinformatics. 2023 Jun 28;24(1):266. doi: 10.1186/s12859-023-05393-y.
- Shin JE, Kim SH, Kong M, Kim HR, Yoon S, Kee KM, et al. Targeting FLT3-TAZ signaling to suppress drug resistance in blast phase chronic myeloid leukemia. Mol Cancer. 2023 Nov 6;22(1):177. doi: 10.1186/s12943-023-01837-4.
- Chen F, Zhao D, Xu Y, Zhang Y, Chen MH, Pathak KV, et al. miR-142 deficit in T cells during blast crisis promotes chronic myeloid leukemia immune escape. Nat Commun. 2025 Feb 1;16(1):1253. doi: 10.1038/s41467-025-56383-y.
- Mojidra R, Gardi N, Bagal B, Khattry N, Gokarn A, et al. Genomic analysis identifies an incipient signature to forecast imatinib resistance before start of treatment in patients with chronic myeloid leukemia. Advances in Biomarker Sciences and Technology. 2025;7:59-64. doi: 10.1016/j.abst.2025.01.004
- Iqbal Z, Alanazi N, AlGarni A, AlMukhaylid S, Adeel K, Sabar MF, et al. Exploring drug potential of myeloid/lymphoid lineage gene mutations in advanced-phase CML using drug discovery tools: insights for precision oncology in blast crisis CML in the post-COVID-19 era. J Popul Ther Clin Pharmacol. 2022;29(4):4994-5012. doi:10.53555/2qjjf483.
- Laganà A, Scalzulli E, Bisegna ML, Ielo C, Martelli M, Breccia M. Understanding and overcoming resistance to tyrosine kinase inhibitors (TKIs) in Chronic myeloid leukemia (CML). Expert Rev Hematol. 2025 Jan;18(1):65-79. doi: 10.1080/17474086.2024.2440776.
- Nikanjam M, Kato S, Allen T, Sicklick JK, Kurzrock R. Novel clinical trial designs emerging from the molecular reclassification of cancer. CA Cancer J Clin. 2025 May-Jun;75(3):243-267. doi: 10.3322/caac.21880.
- Singhal A, Zhao X, Wall P, So E, Calderini G, Partin A, et al. The Hallmarks of Predictive Oncology. Cancer Discov. 2025 Feb 7;15(2):271-285. doi: 10.1158/2159-8290.CD-24-0760.
- Molla G, Bitew M. The future of cancer diagnosis and treatment: unlocking the power of biomarkers and personalized molecular-targeted therapies. Int J Mol Sci. 2025;24(8):6907. doi:10.3390/ijms24086907.
- Gulati G, Gangat N, Lasho TL, Tefferi A. Precision medicine applications in hematologic malignancies: evolving strategies for drug repurposing and biomarker-driven therapies. Blood Cancer J. 2025;15(4):73. doi:10.1038/s41408-025-00855-3.
Download Article
Received April 28, 2025.
Accepted July 16, 2025.
©2025 International Medical Research and Development Corporation.