Synergistic Effects of Amino Acid Combination in Streptozotocin-Induced Diabetic Rats: Amelioration of Hyperglycemia, Hematological Aberrations, and Pancreatic Damage

Nune V. Kocharyan, Narine V. Tumasyan, Silva S. Abrahamyan, Ani B. Suqiasyan, Alla S. Hovsepyan, Hasmik A. Stepanyan, Lusine S. Grigoryan, Zoya Kh. Paronyan, Inesa S. Sahakyan

 
For citation: Kocharyan N, Tumasyan N, Abrahamyan S, Suqiasyan A, Hovsepyan A, Stepanyan H, Grigoryan L, Paronyan Z, Sahakyan I. Synergistic Effects of Amino Acid Combination in Streptozotocin-Induced Diabetic Rats: Amelioration of Hyperglycemia, Hematological Aberrations, and Pancreatic Damage. International Journal of Biomedicine. 2025;15(3):583-589. doi:10.21103/Article15(3)_OA20
 
Originally published September 5, 2025

Abstract: 

Background: This study aimed to investigate the therapeutic potential of an amino acid combination (AAC) comprising gamma-aminobutyric acid, β-alanine, glutamine, and ethanolamine-O-sulfate for synergistic effects in type 1 diabetes mellitus (T1DM).
Methods and Results: The experiments were conducted on albino male rats, divided into three groups: control rats, streptozotocin (STZ)-induced diabetic rats, and diabetic rats treated with AAC. Fasting blood glucose levels and hematological parameters were monitored. Morphological analysis of blood smears and histopathological examination of the pancreas were performed using histological (Hematoxylin and Eosin, Giemsa staining) methods. AAC treatment significantly reduced fasting blood glucose levels and improved hematological parameters, including red and white blood cell counts, which were initially decreased due to STZ-induced diabetes. AAC treatment mitigated the erythrocyte abnormalities observed in diabetic rats. Histopathological examination of the pancreas revealed that AAC partially restored the structural integrity of its tissue, resulting in a slight increase in the size and number of shrunken islets of Langerhans.
Conclusions: AAC exerts a synergistic effect, improving glycemic control, ameliorating hematological aberrations, and promoting partial regeneration of pancreatic islets in T1DM rats. This study highlights the potential of AAC as a therapeutic agent for managing T1DM and its associated complications.

Keywords: 
glycemic control • leukocyte differential count • blood cell morphology • pancreas
References: 
  1. Lee M, Saver JL, Hong KS, Song S, Chang KH, Ovbiagele B. Effect of pre-diabetes on future risk of stroke: meta-analysis. BMJ. 2012 Jun 7;344:e3564. doi: 10.1136/bmj.e3564. PMID: 22677795; PMCID: PMC3370083.
  2. Galiero R, Caturano A, Vetrano E, Beccia D, Brin C, Alfano M, Di Salvo J, Epifani R, Piacevole A, Tagliaferri G, Rocco M, Iadicicco I, Docimo G, Rinaldi L, Sardu C, Salvatore T, Marfella R, Sasso FC. Peripheral Neuropathy in Diabetes Mellitus: Pathogenetic Mechanisms and Diagnostic Options. Int J Mol Sci. 2023 Feb 10;24(4):3554. doi: 10.3390/ijms24043554. PMID: 36834971; PMCID: PMC9967934.
  3. Lim AKh. Diabetic nephropathy - complications and treatment. Int J Nephrol Renovasc Dis. 2014 Oct 15;7:361-81. doi: 10.2147/IJNRD.S40172. PMID: 25342915; PMCID: PMC4206379.
  4. Nentwich MM, Ulbig MW. Diabetic retinopathy - ocular complications of diabetes mellitus. World J Diabetes. 2015 Apr 15;6(3):489-99. doi: 10.4239/wjd.v6.i3.489. PMID: 25897358; PMCID: PMC4398904.
  5. Vileikyte L. Diabetic foot ulcers: a quality of life issue. Diabetes Metab Res Rev. 2001 Jul-Aug;17(4):246-9. doi: 10.1002/dmrr.216. PMID: 11544609.
  6. Pitt DF. Management of gangrene in diabetic extremities. Can J Surg. 1984 Jul;27(4):386-9. PMID: 6744148.
  7. Leon BM, Maddox TM. Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research. World J Diabetes. 2015 Oct 10;6(13):1246-58. doi: 10.4239/wjd.v6.i13.1246. PMID: 26468341; PMCID: PMC4600176.
  8. Lopes-Virella MF, Klein RL, Lyons TJ, Stevenson HC, Witztum JL. Glycosylation of low-density lipoprotein enhances cholesteryl ester synthesis in human monocyte-derived macrophages. Diabetes. 1988 May;37(5):550-7. doi: 10.2337/diab.37.5.550. PMID: 3129328.
  9. Ciepiela O. Old and new insights into the diagnosis of hereditary spherocytosis. Ann Transl Med. 2018 Sep;6(17):339. doi: 10.21037/atm.2018.07.35. PMID: 30306078; PMCID: PMC6174190.
  10. Foulis AK, McGill M, Farquharson MA. Insulitis in type 1 (insulin-dependent) diabetes mellitus in man--macrophages, lymphocytes, and interferon-gamma containing cells. J Pathol. 1991 Oct;165(2):97-103. doi: 10.1002/path.1711650203. PMID: 1744803.
  11. Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, Paciorek CJ, Lin JK, Farzadfar F, Khang YH, Stevens GA, Rao M, Ali MK, Riley LM, Robinson CA, Ezzati M; Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Blood Glucose). National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants. Lancet. 2011 Jul 2;378(9785):31-40. doi: 10.1016/S0140-6736(11)60679-X. Epub 2011 Jun 24. PMID: 21705069.
  12. Meier JJ, Bhushan A, Butler AE, Rizza RA, Butler PC. Sustained beta cell apoptosis in patients with long-standing type 1 diabetes: indirect evidence for islet regeneration? Diabetologia. 2005 Nov;48(11):2221-8. doi: 10.1007/s00125-005-1949-2. Epub 2005 Oct 5. PMID: 16205882.
  13. Bonner-Weir S, Sharma A. Are there pancreatic progenitor cells from which new islets form after birth? Nat Clin Pract Endocrinol Metab. 2006 May;2(5):240-1. doi: 10.1038/ncpendmet0186. PMID: 16932290.
  14. Tian J, Dang HN, Yong J, Chui WS, Dizon MP, Yaw CK, Kaufman DL. Oral treatment with γ-aminobutyric acid improves glucose tolerance and insulin sensitivity by inhibiting inflammation in high fat diet-fed mice. PLoS One. 2011;6(9):e25338. doi: 10.1371/journal.pone.0025338. Epub 2011 Sep 22. PMID: 21966503; PMCID: PMC3178643.
  15. Tian J, Lu Y, Zhang H, Chau CH, Dang HN, Kaufman DL. Gamma-aminobutyric acid inhibits T cell autoimmunity and the development of inflammatory responses in a mouse type 1 diabetes model. J Immunol. 2004 Oct 15;173(8):5298-304. doi: 10.4049/jimmunol.173.8.5298. PMID: 15470076.
  16. Soltani N, Qiu H, Aleksic M, Glinka Y, Zhao F, Liu R, Li Y, Zhang N, Chakrabarti R, Ng T, Jin T, Zhang H, Lu WY, Feng ZP, Prud'homme GJ, Wang Q. GABA exerts protective and regenerative effects on islet beta cells and reverses diabetes. Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11692-7. doi: 10.1073/pnas.1102715108. Epub 2011 Jun 27. PMID: 21709230; PMCID: PMC3136292.
  17. Nealon RS, Sukala WR. The Effect of 28 Days of Beta-alanine Supplementation on Exercise Capacity and Insulin Sensitivity in Individuals with Type 2 Diabetes Mellitus: A Randomised, Double-blind and Placebo-controlled Pilot Trial. Sport Nutr Ther. 2016;1:1-7.  doi: 10.4172/2473-6449.1000111.
  18. Torres-Santiago L, Mauras N, Hossain J, Weltman AL, Darmaun D. Does oral glutamine improve insulin sensitivity in adolescents with type 1 diabetes? Nutrition. 2017 Feb;34:1-6. doi: 10.1016/j.nut.2016.09.003. Epub 2016 Sep 20. PMID: 28063503; PMCID: PMC5656227.
  19. Samocha-Bonet D, Wong O, Synnott EL, Piyaratna N, Douglas A, Gribble FM, Holst JJ, Chisholm DJ, Greenfield JR. Glutamine reduces postprandial glycemia and augments the glucagon-like peptide-1 response in type 2 diabetes patients. J Nutr. 2011 Jul;141(7):1233-8. doi: 10.3945/jn.111.139824. Epub 2011 May 18. PMID: 21593352; PMCID: PMC7212026.
  20. Qume M, Fowler LJ. Effect of chronic treatment with the GABA transaminase inhibitors gamma-vinyl GABA and ethanolamine O-sulphate on the in vitro GABA release from rat hippocampus. Br J Pharmacol. 1997 Oct;122(3):539-45. doi: 10.1038/sj.bjp.0701383. PMID: 9351512; PMCID: PMC1564949.
  21. Kamalyan RG, Khachatryan NKh, Vardanyan AG, Taroyan SQ, Eritsyan IN. The influence of glutamine and ethanolamine-o-sulphate on neuroactive amino acids content in the rat organs in norm and with experimental streptozotocine diabetes. Biological Journal of Armenia. 2015;3(67):61-6.
  22. Khachatryan HS, Sahakyan IK, Tumasyan NV, Kocharyan NV. Effects of ethanol and the amino acids mixture on pathophysiological processes in rats with alloxan-induced diabetes. Biological Journal of Armenia. 2021;3(73):102-8.
  23. Khachatryan RS, Khachatryan NKh, Kamalyan RG. Antidiabetic effect of a complex of neuroactive amino acids in an alloxan diabetes model. Biological Journal of Armenia. 2019;4(71):66-9.
  24. Arora S, Ojha S, Vohora D. Characterisation of streptozotocin induced diabetes mellitus in swiss albino mice. Global Journal of Pharmacology. 2009;3:81-4.
  25. Furman BL. Streptozotocin-Induced Diabetic Models in Mice and Rats. Curr Protoc. 2021 Apr;1(4):e78. doi: 10.1002/cpz1.78. PMID: 33905609.
  26. Hewitt R. GIEMSA PREPARATION FOR STAINING BLOOD FILMS. Science. 1937 Dec 10;86(2241):548. doi: 10.1126/science.86.2241.548. PMID: 17794484.
  27. Spector DL, Goldman RD. In: Basic Methods in Microscopy. Protocols and Concepts from Cells: A Laboratory Manual Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY: USA; 2006.
  28. Bau-Gaudreault L, Grimes C. Evaluation of erythrocyte morphology and prevalence of poikilocytes in peripheral blood of sick domestic ferrets (Mustela putorius furo). Journal of Exotic Pet Medicine. 2019;31:86-90. doi: 10.1053/j.jepm.2019.07.014.
  29. Owen JS, Brown DJ, Harry DS, McIntyre N, Beaven GH, Isenberg H, Gratzer WB. Erythrocyte echinocytosis in liver disease. Role of abnormal plasma high density lipoproteins. J Clin Invest. 1985 Dec;76(6):2275-85. doi: 10.1172/JCI112237. PMID: 4077979; PMCID: PMC424351.
  30. Ciepiela O. Old and new insights into the diagnosis of hereditary spherocytosis. Ann Transl Med. 2018 Sep;6(17):339. doi: 10.21037/atm.2018.07.35. PMID: 30306078; PMCID: PMC6174190.
  31. Kumaran A, Karunakaran R. In Vitro Antioxidant Activities of Methanol Extracts of Five Phyllanthus Species from India. LWT-Food Science and Technology. 2007;40:344-52. doi: 10.1016/j.lwt.2005.09.011.
  32. Kim JS, Ju JB, Choi CW, Kim SC. Hypoglycemic and Antihyperglycemic Effect of Four Korean Medicinal Plants in Alloxan Induced Diabetic Rats. American Journal of Biochemistry and Biotechnology. 2006;2(4):154-60. doi:10.3844/ajbbsp.2006.154.160.
  33. Adeghate E, Ponery AS. GABA in the endocrine pancreas: cellular localization and function in normal and diabetic rats. Tissue Cell. 2002 Feb;34(1):1-6. doi: 10.1054/tice.2002.0217. PMID: 11989965.
  34. Harsunen MH, Puff R, D'Orlando O, Giannopoulou E, Lachmann L, Beyerlein A, von Meyer A, Ziegler AG. Reduced blood leukocyte and neutrophil numbers in the pathogenesis of type 1 diabetes. Horm Metab Res. 2013 Jun;45(6):467-70. doi: 10.1055/s-0032-1331226. Epub 2013 Jan 15. PMID: 23322517.
  35. Huang J, Xiao Y, Zheng P, Zhou W, Wang Y, Huang G, Xu A, Zhou Z. Distinct neutrophil counts and functions in newly diagnosed type 1 diabetes, latent autoimmune diabetes in adults, and type 2 diabetes. Diabetes Metab Res Rev. 2019 Jan;35(1):e3064. doi: 10.1002/dmrr.3064. Epub 2018 Sep 25. PMID: 30123986.
  36. Berezin A. Neutrophil extracellular traps: The core player in vascular complications of diabetes mellitus. Diabetes Metab Syndr. 2019 Sep-Oct;13(5):3017-3023. doi: 10.1016/j.dsx.2018.07.010. Epub 2018 Jul 17. PMID: 30030160.
  37. Ibrahim MSM, Khalil AA, Ali A-SAA. Neutrophils-to-lymphocytes ratio in children with acute heart failure. Egyptian Journal of Hospital Medicine. 2020;81:1878-83. doi: 10.21608/ejhm.2020.121015.
  38. Singh S, Usha, Singh G, Agrawal NK, Singh RG, Kumar SB. Prevalence of Autoantibodies and HLA DR, DQ in Type 1 Diabetes Mellitus. J Clin Diagn Res. 2016 Jul;10(7):EC09-13. doi: 10.7860/JCDR/2016/18657.8163. Epub 2016 Jul 1. PMID: 27630850; PMCID: PMC5020266.
  39. Costantini C, Micheletti A, Calzetti F, Perbellini O, Pizzolo G, Cassatella MA. Neutrophil activation and survival are modulated by interaction with NK cells. Int Immunol. 2010 Oct;22(10):827-38. doi: 10.1093/intimm/dxq434. Epub 2010 Aug 25. PMID: 20739460.
  40. Gonzalez LK, Malhotra S, Levine M, Jacobson-Dickman E. Leukemoid Reaction in a Pediatric Patient With Diabetic Ketoacidosis. Pediatr Emerg Care. 2017 Aug;33(8):e27-e29. doi: 10.1097/PEC.0000000000000558. PMID: 26414639.
  41. Abdel N, Hamed M. Alterations in hematological parameters: could it be a marker in diabetes mellitus? BAOJ Diabetes. 2016;2:1-9.
  42. Angelousi A, Larger E. Anaemia, a common but often unrecognized risk in diabetic patients: a review. Diabetes Metab. 2015 Feb;41(1):18-27. doi: 10.1016/j.diabet.2014.06.001. Epub 2014 Jul 17. PMID: 25043174.
  43. Kennedy L, Baynes JW. Non-enzymatic glycosylation and the chronic complications of diabetes: an overview. Diabetologia. 1984 Feb;26(2):93-8. doi: 10.1007/BF00281113. PMID: 6370764.
  44. Koga T, Moro K, Terao J. Protective effect of a vitamin E analog, phosphatidylchromanol, against oxidative hemolysis of human erythrocytes. Lipids. 1998 Jun;33(6):589-95. doi: 10.1007/s11745-998-0244-4. PMID: 9655374.
  45. Wang T, Wen XJ, Mei XB, Wang QQ, He Q, Zheng JM, Zhao J, Xiao L, Zhang LM. Lipid peroxidation is another potential mechanism besides pore-formation underlying hemolysis of tentacle extract from the jellyfish Cyanea capillata. Mar Drugs. 2013 Jan 9;11(1):67-80. doi: 10.3390/md11010067. PMID: 23303301; PMCID: PMC3564158.
  46. Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res. 2001;50(6):537-46. PMID: 11829314.
  47. McGavin MD, Zachary JF. Basis of Veterinary Disease. 4th ed. St. Louis: Mosby-Elsevier; 2007.

Download Article
Received April 24, 2025.
Accepted June 6, 2025.
©2025 International Medical Research and Development Corporation.