Decoding Potential Mechanism of Cucurbitacin IIa Treatment on Lyme Neuroborreliosis Through Integrating Network Pharmacology-Molecular Docking Technique and Cell Experiment

Yuxin Fan, Fukai Bao, Hanxin Wu, Li Peng, Liangyu Zhu, Aihua Liu

 
For citation: Fan Y, Bao F, Wu H, Peng L, Zhu L, Liu A. Decoding Potential Mechanism of Cucurbitacin IIa Treatment on Lyme Neuroborreliosis Through Integrating Network Pharmacology-Molecular Docking Technique and Cell Experiment. International Journal of Biomedicine. 2025;15(4):715-721. doi:10.21103/Article15(4)_OA11
 
Originally published December 5, 2025

Abstract: 

Introduction: Cucurbitacin IIa (CuIIa), one of the most important active components of Cucurbitaceae plants, has a wide range of pharmacological effects. However, the mechanisms underlying its effects on Lyme neuroborreliosis (LNB) remain unclear. This study aimed to elucidate the potential mechanisms of CuIIa activity against LNB.
Methods and Results: Potential CuIIa targets were obtained from the Pharmmapper, Swiss Target Prediction, and Batman-Traditional Chinese medicine databases. LNB-associated genes were obtained from OMIM, GeneCards, and DisGeNET. Disease-drug intersection targets were identified using Venny. Protein-protein interaction (PPI) networks were constructed using STRING. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were done on the Database for Annotation, Visualization, and Integrated Discovery (DAVID). A drug-target-pathway-disease network was constructed and Autodock software was used to verify molecular docking between active ingredients and the core targets. Finally, the key targets were experimentally validated.
A total of 574 CuIIa targets and 73 LNB-associated genes were identified, and 13 genes were common between the 2 groups. By constructing a PPI network for key targets, the top 10 core target genes were MMP9, TNF, ALB, CTSG, TGFB1, CCL2, IL4, CRP, CCL3, and CCL5. GO functional enrichment and KEGG pathway analyses identified 118 entries and 110 pathways, respectively. Molecular docking results showed that CuIIa binds to key important targets in the core network with high affinity. Validation analyses of the key targets, CCL2 and CCL5, showed that CuIIa decreased their expression in a concentration-dependent manner.
Conclusion: This study revealed the potential mechanism of CuIIa activity against Lyme neuroborreliosis. Our preliminary findings using molecular docking modeling and experimental validation provide a basis for future clinical CuIIa applications.

Keywords: 
Cucurbitacin IIa • Lyme neuroborreliosis • network pharmacology • enrichment analysis • chemokine • molecular docking
References: 
  1. Mead P. Epidemiology of Lyme Disease. Infect Dis Clin North Am. 2022 Sep;36(3):495-521. doi: 10.1016/j.idc.2022.03.004. PMID: 36116831.
  2. Garcia-Monco JC, Benach JL. Lyme Neuroborreliosis: Clinical Outcomes, Controversy, Pathogenesis, and Polymicrobial Infections. Ann Neurol. 2019 Jan;85(1):21-31. doi: 10.1002/ana.25389. PMID: 30536421; PMCID: PMC7025284.
  3. Bobe JR, Jutras BL, Horn EJ, Embers ME, Bailey A, Moritz RL, Zhang Y, Soloski MJ, Ostfeld RS, Marconi RT, Aucott J, Ma'ayan A, Keesing F, Lewis K, Ben Mamoun C, Rebman AW, McClune ME, Breitschwerdt EB, Reddy PJ, Maggi R, Yang F, Nemser B, Ozcan A, Garner O, Di Carlo D, Ballard Z, Joung HA, Garcia-Romeu A, Griffiths RR, Baumgarth N, Fallon BA. Recent Progress in Lyme Disease and Remaining Challenges. Front Med (Lausanne). 2021 Aug 18;8:666554. doi: 10.3389/fmed.2021.666554. PMID: 34485323; PMCID: PMC8416313.
  4. Wormser GP, Dattwyler RJ, Shapiro ED, Halperin JJ, Steere AC, Klempner MS, Krause PJ, Bakken JS, Strle F, Stanek G, Bockenstedt L, Fish D, Dumler JS, Nadelman RB. The clinical assessment, treatment, and prevention of lyme disease, human granulocytic anaplasmosis, and babesiosis: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis. 2006 Nov 1;43(9):1089-134. doi: 10.1086/508667. Epub 2006 Oct 2. Erratum in: Clin Infect Dis. 2007 Oct 1;45(7):941. PMID: 17029130.
  5. Steere AC, Angelis SM. Therapy for Lyme arthritis: strategies for the treatment of antibiotic-refractory arthritis. Arthritis Rheum. 2006 Oct;54(10):3079-86. doi: 10.1002/art.22131. PMID: 17009226.
  6. Chen DL, Xu XD, Li RT, Wang BW, Yu M, Liu YY, Ma GX. Five New Cucurbitane-Type Triterpenoid Glycosides from the Rhizomes of Hemsleya penxianensis with Cytotoxic Activities. Molecules. 2019 Aug 13;24(16):2937. doi: 10.3390/molecules24162937. PMID: 31412677; PMCID: PMC6720345.
  7. Zeng Y, Wang J, Huang Q, Ren Y, Li T, Zhang X, Yao R, Sun J. Cucurbitacin IIa: A review of phytochemistry and pharmacology. Phytother Res. 2021 Aug;35(8):4155-4170. doi: 10.1002/ptr.7077. Epub 2021 Mar 16. PMID: 33724593.
  8. Hunsakunachai N, Nuengchamnong N, Jiratchariyakul W, Kummalue T, Khemawoot P. Hunsakunachai N, Nuengchamnong N, Jiratchariyakul W, Kummalue T, Khemawoot P. Pharmacokinetics of cucurbitacin B from Trichosanthes cucumerina L. in rats. BMC Complement Altern Med. 2019 Jul 4;19(1):157. doi: 10.1186/s12906-019-2568-7. PMID: 31272429; PMCID: PMC6609384.
  9. Zhou SM, Guan SY, Yang L, Yang LK, Wang L, Nie HF, Li X, Zhao MG, Yang Q, Wu H. Cucurbitacin IIa exerts antidepressant-like effects on mice exposed to chronic unpredictable mild stress. Neuroreport. 2017 Mar 22;28(5):259-267. doi: 10.1097/WNR.0000000000000747. PMID: 28240721.
  10. Luo TT, Lu Y, Yan SK, Xiao X, Rong XL, Guo J. Network Pharmacology in Research of Chinese Medicine Formula: Methodology, Application and Prospective. Chin J Integr Med. 2020 Jan;26(1):72-80. doi: 10.1007/s11655-019-3064-0. Epub 2019 Apr 2. PMID: 30941682.
  11. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE. PubChem 2023 update. Nucleic Acids Res. 2023 Jan 6;51(D1):D1373-D1380. doi: 10.1093/nar/gkac956. PMID: 36305812; PMCID: PMC9825602.
  12. Daina A, Michielin O, Zoete V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019 Jul 2;47(W1):W357-W364. doi: 10.1093/nar/gkz382. PMID: 31106366; PMCID: PMC6602486.
  13. Liu X, Ouyang S, Yu B, Liu Y, Huang K, Gong J, Zheng S, Li Z, Li H, Jiang H. PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W609-14. doi: 10.1093/nar/gkq300. Epub 2010 Apr 29. PMID: 20430828; PMCID: PMC2896160.
  14. Liu Z, Guo F, Wang Y, Li C, Zhang X, Li H, Diao L, Gu J, Wang W, Li D, He F. BATMAN-TCM: a Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine. Sci Rep. 2016 Feb 16;6:21146. doi: 10.1038/srep21146. PMID: 26879404; PMCID: PMC4754750.
  15. Rebhan M, Chalifa-Caspi V, Prilusky J, Lancet D. GeneCards: integrating information about genes, proteins and diseases. Trends Genet. 1997 Apr;13(4):163. doi: 10.1016/s0168-9525(97)01103-7. PMID: 9097728.
  16. Amberger JS, Hamosh A. Searching Online Mendelian Inheritance in Man (OMIM): A Knowledgebase of Human Genes and Genetic Phenotypes. Curr Protoc Bioinformatics. 2017 Jun 27;58:1.2.1-1.2.12. doi: 10.1002/cpbi.27. PMID: 28654725; PMCID: PMC5662200.
  17. Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J, Ronzano F, Centeno E, Sanz F, Furlong LI. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 2020 Jan 8;48(D1):D845-D855. doi: 10.1093/nar/gkz1021. PMID: 31680165; PMCID: PMC7145631.
  18. UniProt Consortium T. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2018 Mar 16;46(5):2699. doi: 10.1093/nar/gky092. Erratum for: Nucleic Acids Res. 2017 Jan 4;45(D1):D158-D169. doi: 10.1093/nar/gkw1099. PMID: 29425356; PMCID: PMC5861450.
  19. Oliveros JC. VENNY. An interactive tool for comparing lists with Venn Diagrams. http://bioinfogp.cnb.csic.es/tools/venny/index.html 2007
  20. von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, Jouffre N, Huynen MA, Bork P. STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res. 2005 Jan 1;33(Database issue):D433-7. doi: 10.1093/nar/gki005. PMID: 15608232; PMCID: PMC539959.
  21. Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8 Suppl 4(Suppl 4):S11. doi: 10.1186/1752-0509-8-S4-S11. Epub 2014 Dec 8. PMID: 25521941; PMCID: PMC4290687.
  22. Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003;4(5):P3. Epub 2003 Apr 3. PMID: 12734009.
  23. O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open chemical toolbox. J Cheminform. 2011 Oct 7;3:33. doi: 10.1186/1758-2946-3-33. PMID: 21982300; PMCID: PMC3198950.
  24. Sehnal D, Bittrich S, Deshpande M, Svobodová R, Berka K, Bazgier V, Velankar S, Burley SK, Koča J, Rose AS. Mol* Viewer: modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Res. 2021 Jul 2;49(W1):W431-W437. doi: 10.1093/nar/gkab314. PMID: 33956157; PMCID: PMC8262734.
  25. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010 Jan 30;31(2):455-61. doi: 10.1002/jcc.21334. PMID: 19499576; PMCID: PMC3041641.
  26. Abo-Zeid Y, Ismail NSM, McLean GR, Hamdy NM. A molecular docking study repurposes FDA approved iron oxide nanoparticles to treat and control COVID-19 infection. Eur J Pharm Sci. 2020 Oct 1;153:105465. doi: 10.1016/j.ejps.2020.105465. Epub 2020 Jul 12. PMID: 32668312; PMCID: PMC7354764.
  27. Pinzi L, Rastelli G. Molecular Docking: Shifting Paradigms in Drug Discovery. Int J Mol Sci. 2019 Sep 4;20(18):4331. doi: 10.3390/ijms20184331. PMID: 31487867; PMCID: PMC6769923.
  28. Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD. Molecular docking and structure-based drug design strategies. Molecules. 2015 Jul 22;20(7):13384-421. doi: 10.3390/molecules200713384. PMID: 26205061; PMCID: PMC6332083.
  29. Molloy PJ, Telford SR 3rd, Chowdri HR, Lepore TJ, Gugliotta JL, Weeks KE, Hewins ME, Goethert HK, Berardi VP. Borrelia miyamotoi Disease in the Northeastern United States: A Case Series. Ann Intern Med. 2015 Jul 21;163(2):91-8. doi: 10.7326/M15-0333. PMID: 26053877.
  30. Beck AR, Marx GE, Hinckley AF. Diagnosis, Treatment, and Prevention Practices for Lyme Disease by Clinicians, United States, 2013-2015. Public Health Rep. 2021 Sep-Oct;136(5):609-617. doi: 10.1177/0033354920973235. Epub 2021 Feb 4. PMID: 33541229; PMCID: PMC8361562.
  31. Yu K, Yang X, Li Y, Cui X, Liu B, Yao Q. Synthesis of cucurbitacin IIa derivatives with apoptosis-inducing capabilities in human cancer cells. RSC Adv. 2020 Jan 23;10(7):3872-3881. doi: 10.1039/c9ra09113k. PMID: 35492669; PMCID: PMC9048769.
  32. Zhao H, Dai X, Han X, Liu A, Bao F, Bai R, Ji Z, Jian M, Ding Z, Abi ME, Chen T, Luo L, Ma M, Tao L. Borrelia burgdorferi basic membrane protein A initiates proinflammatory chemokine storm in THP 1-derived macrophages via the receptors TLR1 and TLR2. Biomed Pharmacother. 2019 Jul;115:108874. doi: 10.1016/j.biopha.2019.108874. Epub 2019 Apr 16. PMID: 31003080.
  33. Cepok S, Zhou D, Vogel F, Rosche B, Grummel V, Sommer N, Hemmer B. The immune response at onset and during recovery from Borrelia burgdorferi meningoradiculitis. Arch Neurol. 2003 Jun;60(6):849-55. doi: 10.1001/archneur.60.6.849. PMID: 12810490.
  34. Grygorczuk S, Czupryna P, Dunaj J, Moniuszko-Malinowska A, Świerzbińska R, Pancewicz S. The chemotactic cytokines in the cerebrospinal fluid of patients with neuroborreliosis. Cytokine. 2021 Jun;142:155490. doi: 10.1016/j.cyto.2021.155490. Epub 2021 Mar 18. PMID: 33744829.
  35. Ramesh G, Borda JT, Gill A, Ribka EP, Morici LA, Mottram P, Martin DS, Jacobs MB, Didier PJ, Philipp MT. Possible role of glial cells in the onset and progression of Lyme neuroborreliosis. J Neuroinflammation. 2009 Aug 25;6:23. doi: 10.1186/1742-2094-6-23. PMID: 19706181; PMCID: PMC2748066.

Download Article
Received August 18, 2025.
Accepted September 27, 2025.
©2025 International Medical Research and Development Corporation.