For citation: Jabbar FAA, Al-Salmani MS, Kamel HR, Aal Owaif HA. Biofilm-Associated Genes and Antibiotic Susceptibility in Burn-Isolated Pseudomonas aeruginosa. International Journal of Biomedicine. 2025;15(4):727-730. doi:10.21103/Article15(4)_OA13
Originally published December 5, 2025
Background: Burn injuries reduce skin protection and immune responses, making them a global health issue. Among the most prevalent opportunistic bacteria in burn wounds is Pseudomonas aeruginosa, which is drug-resistant and produces biofilms. This study investigated biofilm-associated virulence genes, antibiotic susceptibility, and the link between gene expression, biofilm production, and antibiotic resistance.
Methods and Results: Burn patients hospitalized in Baghdad between June and August 2024 provided 120 burn swabs. P. aeruginosa isolates were identified using biochemical tests and the VITEK-2 system. Susceptibility to antibiotics was determined using the Kirby-Bauer disk diffusion technique and interpreted in accordance with the 2024 CLSI criteria. A microtiter plate test was used to quantify the production of biofilm at an optical density (OD) of 570 nm. The algD, pelA, and pslA genes were detected by PCR.
P. aeruginosa has been verified in 57 (47.5%) of the isolates. Of them, 91.2% were resistant to ceftazidime, 87.7% to imipenem, 73.7% to gentamicin, and 61.4% to ciprofloxacin. MDR was detected in 63.1% of isolates. In 49.1%, 35%, and 15.9% of the isolates, biofilm development was strong, moderate, and weak, respectively. The algD, pelA, and pslA genes were detected in 86.0%, 68.4%, and 59.6% of the isolates, respectively. A clear relationship was observed between these genes and biofilm production and resistance patterns.
Conclusion: The results in our study support a robust link between biofilm production, antibiotic resistance, and genes related to biofilm production by P. aeruginosa isolated from burn sites. Implementing gene-targeted techniques and optimal combination treatment may greatly enhance infection management and patient outcomes in burn care facilities.
- Yakupu A, Zhang J, Dong W, Song F, Dong J, Lu S. The epidemiological characteristic and trends of burns globally. BMC Public Health. 2022 Aug 22;22(1):1596. doi: 10.1186/s12889-022-13887-2. PMID: 35996116; PMCID: PMC9396832.
- Al-Salmani MS, Shareef SA, Ali SF, Hadi SA, Owaif HAA. Virulence Factors and Antibiotic Susceptibility in Staphylococcus aureus Isolated from Burn Infections. International Journal of Biomedicine. 2025;15(1):192-195. doi:10.21103/ Article15(1)_OA24.
- Colvin KM, Gordon VD, Murakami K, Borlee BR, Wozniak DJ, Wong GC, Parsek MR. The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathog. 2011 Jan 27;7(1):e1001264. doi: 10.1371/journal.ppat.1001264. PMID: 21298031; PMCID: PMC3029257.
- Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev. 2009 Oct;22(4):582-610. doi: 10.1128/CMR.00040-09. PMID: 19822890; PMCID: PMC2772362.
- Bjarnsholt T, Jensen PØ, Fiandaca MJ, Pedersen J, Hansen CR, Andersen CB, Pressler T, Givskov M, Høiby N. Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr Pulmonol. 2009 Jun;44(6):547-58. doi: 10.1002/ppul.21011. PMID: 19418571.
- Owaif HAA, Aldulaimy MK, Abdulateef SA. The Antibiotic Resistance Genes blaSHV, blaOXA-48, blaTEM and blaIMP in Pseudomonas aeruginosa Isolated from Respiratory Tract Infections in Baghdad, Iraq. International Journal of Biomedicine.2023;13(4):341-344. doi:10.21103/Article13(4) _OA18.
- Ma L, Conover M, Lu H, Parsek MR, Bayles K, Wozniak DJ. Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog. 2009 Mar;5(3):e1000354. doi: 10.1371/journal.ppat.1000354. Epub 2009 Mar 27. PMID: 19325879; PMCID: PMC2654510.
- Irie Y, Starkey M, Edwards AN, Wozniak DJ, Romeo T, Parsek MR. Pseudomonas aeruginosa biofilm matrix polysaccharide Psl is regulated transcriptionally by RpoS and post-transcriptionally by RsmA. Mol Microbiol. 2010 Oct;78(1):158-72. doi: 10.1111/j.1365-2958.2010.07320.x. Epub 2010 Aug 2. PMID: 20735777; PMCID: PMC2984543.
- Kos VN, Déraspe M, McLaughlin RE, Whiteaker JD, Roy PH, Alm RA, Corbeil J, Gardner H. The resistome of Pseudomonas aeruginosa in relationship to phenotypic susceptibility. Antimicrob Agents Chemother. 2015 Jan;59(1):427-36. doi: 10.1128/AAC.03954-14. Epub 2014 Nov 3. PMID: 25367914; PMCID: PMC4291382.
- Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv. 2019 Jan-Feb;37(1):177-192. doi: 10.1016/j.biotechadv.2018.11.013. Epub 2018 Nov 27. PMID: 30500353.
- Hussein MH, Aal Owaif HA, Abdulateef SA. The Aminoglycoside Resistance Genes, pehX, blaCTX-M, blaAmpC, and npsB among Klebsiella oxytoca Stool Samples. International Journal of Biomedicine. 2023;13(3):127-130. doi:10.21103/Article13(3)_OA13.
- Ali S, Assafi M. Prevalence and antibiogram of Pseudomonas aeruginosa and Staphylococcus aureus clinical isolates from burns and wounds in Duhok City, Iraq. J Infect Dev Ctries. 2024 Jan 31;18(1):82-92. doi: 10.3855/jidc.18193. PMID: 38377094.
- Ugwuanyi FC, Ajayi A, Ojo DA, Adeleye AI, Smith SI. Evaluation of efflux pump activity and biofilm formation in multidrug resistant clinical isolates of Pseudomonas aeruginosa isolated from a Federal Medical Center in Nigeria. Ann Clin Microbiol Antimicrob. 2021 Feb 2;20(1):11. doi: 10.1186/s12941-021-00417-y. PMID: 33531042; PMCID: PMC7852189.
- Abdulateef SA, Al-Salmani MS, Aal Owaif HA. Acinetobacter baumannii producing ESBLs and carbapenemases in the Intensive Care Units developing fosfomycin and colistin resistance. Journal of Applied and Natural Science. 2023;15(3):1263-1267. doi:10.31018/jans. v15i3.4872.
- Heidari R, Farajzadeh Sheikh A, Hashemzadeh M, Farshadzadeh Z, Salmanzadeh S, Saki M. Antibiotic resistance, biofilm production ability and genetic diversity of carbapenem-resistant Pseudomonas aeruginosa strains isolated from nosocomial infections in southwestern Iran. Mol Biol Rep. 2022 May;49(5):3811-3822. doi: 10.1007/s11033-022-07225-3. Epub 2022 Feb 15. PMID: 35169997; PMCID: PMC8853202.
- Ahmed Y, Mohamed F, El-Sayed HA, Fahmy YA. Correlation between biofilm formation and multidrug resistance in clinical isolates of Pseudomonas aeruginosa. Microbes Infect Dis. 2021;2(3):541–9. doi:10.21608/mid.2021.181719.
- Kumar M, Sarma DK, Shubham S, Kumawat M, Verma V, Nina PB, Jp D, Kumar S, Singh B, Tiwari RR. Futuristic Non-antibiotic Therapies to Combat Antibiotic Resistance: A Review. Front Microbiol. 2021 Jan 26;12:609459. doi: 10.3389/fmicb.2021.609459. PMID: 33574807; PMCID: PMC7870489.
- Yang F, Liu C, Ji J, Cao W, Ding B, Xu X. Molecular Characteristics, Antimicrobial Resistance, and Biofilm Formation of Pseudomonas aeruginosa Isolated from Patients with Aural Infections in Shanghai, China. Infect Drug Resist. 2021 Sep 7;14:3637-3645. doi: 10.2147/IDR.S328781. PMID: 34522106; PMCID: PMC8434892.
- Al-Dulaymi AAA-M, Aal Owaif HA. Overexpression of lasB gene in Klebsiella pneumoniae and its effect on biofilm formation and antibiotic resistance. Al-Rafidain J Med Sci. 2024;6(2):3–8. doi:10.54133/ajms.v6i2.668.
- Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2004 Feb;2(2):95-108. doi: 10.1038/nrmicro821. PMID: 15040259.
- Häussler S. Biofilm formation by the small colony variant phenotype of Pseudomonas aeruginosa. Environ Microbiol. 2004 Jun;6(6):546-51. doi: 10.1111/j.1462-2920.2004.00618.x. PMID: 15142242.
- Farhan RE, Solyman SM, Hanora AM, Azab MM. Molecular detection of different virulence factors genes harbor pslA, pelA, exoS, toxA and algD among biofilm-forming clinical isolates of Pseudomonas aeruginosa. Cell Mol Biol (Noisy-le-grand). 2023 May 31;69(5):32-39. doi: 10.14715/cmb/2023.69.5.6. PMID: 37571905.
- de Sousa T, Silva C, Alves O, Costa E, Igrejas G, Poeta P, Hébraud M. Determination of Antimicrobial Resistance and the Impact of Imipenem + Cilastatin Synergy with Tetracycline in Pseudomonas aeruginosa Isolates from Sepsis. Microorganisms. 2023 Nov 2;11(11):2687. doi: 10.3390/microorganisms11112687. PMID: 38004699; PMCID: PMC10673103.
- Mikhail S, Singh NB, Kebriaei R, Rice SA, Stamper KC, Castanheira M, Rybak MJ. Evaluation of the Synergy of Ceftazidime-Avibactam in Combination with Meropenem, Amikacin, Aztreonam, Colistin, or Fosfomycin against Well-Characterized Multidrug-Resistant Klebsiella pneumoniae and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2019 Jul 25;63(8):e00779-19. doi: 10.1128/AAC.00779-19. PMID: 31182535; PMCID: PMC6658738.
- Rajabi H, Salimizand H, Khodabandehloo M, Fayyazi A, Ramazanzadeh R. Prevalence of algD, pslD, pelF, Ppgl, and PAPI-1 Genes Involved in Biofilm Formation in Clinical Pseudomonas aeruginosa Strains. Biomed Res Int. 2022 May 24;2022:1716087. doi: 10.1155/2022/1716087. PMID: 35655484; PMCID: PMC9155974.
- de Sousa T, Hébraud M, Alves O, Costa E, Maltez L, Pereira JE, Martins Â, Igrejas G, Poeta P. Study of Antimicrobial Resistance, Biofilm Formation, and Motility of Pseudomonas aeruginosa Derived from Urine Samples. Microorganisms. 2023 May 19;11(5):1345. doi: 10.3390/microorganisms11051345. PMID: 37317319; PMCID: PMC10224020.
- Fleitas Martínez O, Cardoso MH, Ribeiro SM, Franco OL. Recent Advances in Anti-virulence Therapeutic Strategies With a Focus on Dismantling Bacterial Membrane Microdomains, Toxin Neutralization, Quorum-Sensing Interference and Biofilm Inhibition. Front Cell Infect Microbiol. 2019 Apr 2;9:74. doi: 10.3389/fcimb.2019.00074. PMID: 31001485; PMCID: PMC6454102.
Download Article
Received September 23, 2025.
Accepted November 13, 2025.
©2025 International Medical Research and Development Corporation.




