The Effect of Direct Electric Current on Some Parameters of Human Blood Coagulation

Anzhela Z. Galstyan, Zoya Kh. Paronyan, Narine S. Piloyan, Hasmik A. Stepanyan, Davit A. Poghosyan, Lusine R. Arakelyan, Torgom Ye. Seferyan

 
For citation: Galstyan AZ, Paronyan ZKh, Piloyan NS, Stepanyan HA, Poghosyan DA, Arakelyan LR, Seferyan TYe. The Effect of Direct Electric Current on Some Parameters of Human Blood Coagulation. International Journal of Biomedicine. 2025;15(4):741-745. doi:10.21103/Article15(4)_OA16
 
Originally published December 5, 2025

Abstract: 

Background: Direct current (DC) is increasingly used in medical applications, yet its effects on blood plasma hemostasis remain underexplored. This study systematically examines the effects of DC exposure on key coagulation parameters and plasma pH, highlighting their potential physiological relevance and implications for electrotherapeutic strategies.
Methods and Results: The experiments used a pooled plasma sample from healthy donors, which was subjected to electrolysis using platinum point electrodes and a DC with a voltage range of 11-19V. A number of parameters characterizing plasma hemostasis were measured to assess the coagulation process, including recalcification time, prothrombin time, thrombin time, activated partial thromboplastin time, international normalized ratio index, fibrinogen level, pH, and absorbed current strength. Experimental data showed that, with increasing current voltage during electrolysis, plasma coagulation time exhibits nonlinear changes, some parameters change significantly, and plasma hemostasis slows down beyond a certain current voltage threshold. The obtained data can be helpful for both therapeutic and other research in this field.

Keywords: 
plasma • hemostasis • fibrinogen • anticoagulant action
References: 
  1. Zhong S, Yao S, Zhao Q, Wang Z, Liu Z, Li L, et al. Electricity‐Assisted Cancer Therapy: From Traditional Clinic Applications to Emerging Methods Integrated with Nanotechnologies. Advanced NanoBiomed Research. 2023 Mar;3(3):2200143.
  2. Watson T. The role of electrotherapy in contemporary physiotherapy practice. Man Ther. 2000 Aug;5(3):132-41. doi: 10.1054/math.2000.0363. PMID: 11034883.
  3. Hills A, Stebbing J. Electrotherapy: enlightening modern medicine. Lancet Oncol. 2014 Sep;15(10):1060-1. doi: 10.1016/S1470-2045(14)70423-1. PMID: 25186041.
  4. Shin YI, Foerster Á, Nitsche MA. Transcranial direct current stimulation (tDCS) - application in neuropsychology. Neuropsychologia. 2015 Mar;69:154-75. doi: 10.1016/j.neuropsychologia.2015.02.002. Epub 2015 Feb 3. PMID: 25656568.
  5. Ushimaru Y, Odagiri K, Akeo K, Ban N, Hosaka M, Yamashita K, Saito T, Tanaka K, Yamamoto K, Makino T, Takahashi T, Kurokawa Y, Eguchi H, Doki Y, Nakajima K. Efficacy of electrocoagulation hemostasis: a study on the optimal usage of the very-low-voltage mode. Surg Endosc. 2022 Nov;36(11):8592-8599. doi: 10.1007/s00464-022-09492-4. Epub 2022 Aug 5. PMID: 35931893.
  6. Mruthunjaya AKV, Torriero AAJ. Electrochemical Monitoring in Anticoagulation Therapy. Molecules. 2024 Mar 24;29(7):1453. doi: 10.3390/molecules29071453. PMID: 38611733; PMCID: PMC11012951.
  7. Falanga A, Marchetti M, Vignoli A. Coagulation and cancer: biological and clinical aspects. J Thromb Haemost. 2013 Feb;11(2):223-33. doi: 10.1111/jth.12075. PMID: 23279708.
  8. Jahanbani A, Eskandari Roozbahani N. Electrochemical Anticoagulant Method. In: Qi X, Shao X, editors. Anticoagulation - An Update. IntechOpen; 2024.
  9. Okada F, Nay K. Electrolysis for Ozone Water Production. In: Kleperis J, editor. Electrolysis. InTech; 2012. p. 243–72.
  10. Wang YH, Chen QY. Anodic Materials for Electrocatalytic Ozone Generation. International Journal of Electrochemistry. 2013;2013:1–7.
  11. Jackson CV, Mickelson JK, Stringer K, Rao PS, Lucchesi BR. Electrolysis-induced myocardial dysfunction. A novel method for the study of free radical mediated tissue injury. J Pharmacol Methods. 1986 Jul;15(4):305-20. doi: 10.1016/0160-5402(86)90010-0. PMID: 3724201.
  12. Nencini F, Giurranna E, Borghi S, Taddei N, Fiorillo C, Becatti M. Fibrinogen Oxidation and Thrombosis: Shaping Structure and Function. Antioxidants (Basel). 2025 Mar 26;14(4):390. doi: 10.3390/antiox14040390. PMID: 40298646; PMCID: PMC12024030.
  13. Scudamore C, Scudamore C, St. Thomas’s Hospital. Medical School Library former owner, King’s College London. An essay on the blood. London : printed for the author, and published by Longman, Hurst, Rees, Orme, Brown, and Green; 1824. 194 p.
  14. Hayashi H. Fundamental studies on the electrical potential difference across blood vessel walls and applications of direct current coagulation. Nagoya J Med Sci. 1968 Mar;30(4):399-418. PMID: 5662367.
  15. SCHWARTZ SI. Prevention and production of thrombosis by alterations in electric environment. Surg Gynecol Obstet. 1959 May;108(5):533-6. PMID: 13647208.
  16. KRAVITZ HM, WAGNER KJ. APPLICATIONS OF DIRECT CURRENT COAGULATION IN PLASTIC SURGERY. Plast Reconstr Surg. 1964 Apr;33:361-7. doi: 10.1097/00006534-196404000-00006. PMID: 14142134.
  17. Jahanbani A, Dezfouli SMS, Javaherifar A, Yourdkhani MR, Goudarzi M. To Delay the Process of Blood Coagulation Using Electrolysis Technique in Sheep Blood. International Journal of Scientific & Engineering Research. 2017 Mar;8(3).
  18. Kahn NN, Feldman SP, Bauman WA. Lower-extremity functional electrical stimulation decreases platelet aggregation and blood coagulation in persons with chronic spinal cord injury: a pilot study. J Spinal Cord Med. 2010;33(2):150-8. doi: 10.1080/10790268.2010.11689690. PMID: 20486534; PMCID: PMC2869270.
  19. Gissel M, Brummel-Ziedins KE, Butenas S, Pusateri AE, Mann KG, Orfeo T. Effects of an acidic environment on coagulation dynamics. J Thromb Haemost. 2016 Oct;14(10):2001-2010. doi: 10.1111/jth.13418. Epub 2016 Sep 12. PMID: 27431334.
  20. Lee RI, White PD. A CLINICAL STUDY OF THE COAGULATION TIME OF BLOOD. The American Journal of the Medical Sciences. 1913 Apr;145(4):495–503.
  21. Dorgalaleh A, Favaloro EJ, Bahraini M, Rad F. Standardization of Prothrombin Time/International Normalized Ratio (PT/INR). Int J Lab Hematol. 2021 Feb;43(1):21-28. doi: 10.1111/ijlh.13349. Epub 2020 Sep 26. PMID: 32979036.
  22. Walker HK, Hall WD, Hurst JW, editors. Clinical Methods: The History, Physical, and Laboratory Examinations. 3rd ed. Boston: Butterworths; 1990. PMID: 21250045.
  23. Ruggeri ZM. Von Willebrand factor, platelets and endothelial cell interactions. J Thromb Haemost. 2003 Jul;1(7):1335-42. doi: 10.1046/j.1538-7836.2003.00260.x. PMID: 12871266.
  24. Saxena KK, Srivastava RK, Kulshrestha VK, Prasad DN. A simple gravimetric method for estimation of plasma fibrinogen. Indian J Physiol Pharmacol. 1979 Apr-Jun;23(2):137-9. PMID: 489096.
  25. Naceradska J, Pivokonska L, Pivokonsky M. On the importance of pH value in coagulation. Journal of Water Supply: Research and Technology-Aqua. 2019 May;68(3):222–30.
  26. Luyendyk JP, Schoenecker JG, Flick MJ. The multifaceted role of fibrinogen in tissue injury and inflammation. Blood. 2019 Feb 7;133(6):511-520. doi: 10.1182/blood-2018-07-818211. Epub 2018 Dec 6. PMID: 30523120; PMCID: PMC6367649.
  27. Wilson K, Walker J, editors. Principles and Techniques of Biochemistry and Molecular Biology. 7th ed. Cambridge University Press; 2010.
  28. Berg JM, Tymoczko JL, Gatto GJ, Stryer L, editors. Biochemistry. 8. ed. New York, NY: W.H. Freeman/Macmillan; 2015.
  29. Scharbert G, Franta G, Wetzel L, Kozek-Langenecker S. Effect of pH levels on platelet aggregation and coagulation: a whole blood in vitro study. Crit Care. 2011 Feb;15(S1):P446, cc9866.

Download Article
Received September 30, 2025.
Accepted November 8, 2025.
©2025 International Medical Research and Development Corporation.